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To the Noble and Right Honourable

Sir ROBERT WALPOLE.

SIR,
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I Take the liberty to send you
this view of Sir Isaac Newton’s
philosophy, which, if
it were performed suitable to the
dignity of the subject, might
not be a present unworthy the
acceptance of the greatest person. For his philosophy
operations of nature, which for so many ages
had imployed the curiosity of mankind; though
no one before him was furnished with the
strength of mind necessary to go any depth in
this difficult search. However, I am encouraged
to hope, that this attempt, imperfect as it is, to
give our countrymen in general some conception
of the labours of a person, who shall always
be the boast of this nation, may be received
with indulgence by one, under whose
influence these kingdoms enjoy so much happiness.
Indeed my admiration at the surprizing
inventions of this great man, carries me to conceive
of him as a person, who not only must
raise the glory of the country, which gave him
birth; but that he has even done honour to human
nature, by having extended the greatest
and most noble of our faculties, reason, to subjects,
which, till he attempted them, appeared
to be wholly beyond the reach of our limited
capacities.  And what can give us a
more pleasing prospect of our own condition,
than to see so exalted a proof of the strength
of that faculty, whereon the conduct of our
lives, and our happiness depends; our passions
and all our motives to action being in such
manner guided by our opinions, that where
these are just, our whole behaviour will be
praise-worthy? But why do I presume to detain
you, Sir, with such reflections as these,
who must have the fullest experience within
your own mind, of the effects of right reason?
For to what other source can be ascribed that
amiable frankness and unreserved condescension
among your friends, or that masculine perspicuity
and strength of argument, whereby you draw
the admiration of the publick, while you are
engaged in the most important of all causes,
the liberties of mankind?

I humbly crave leave to make the only acknowledgement
within my power, for the benefits,
which I receive in common with the rest of my
countrymen from these high talents, by subscribing
my self

SIR,

Your most faithful,

and

Most humble Servant,

Henry Pemberton.









PREFACE.

I Drew up the following papers many years ago at the desire of
some friends, who, upon my taking care of the late edition of
Sir Isaac Newton’s Principia, perswaded me to make them
publick. I laid hold of that opportunity, when my thoughts
were afresh employed on this subject, to revise what I had formerly
written. And I now send it abroad not without some hopes of answering
these two ends. My first intention was to convey to such, as are not
used to mathematical reasoning, some idea of the philosophy of a person,
who has acquired an universal reputation, and rendered our nation
famous for these speculations in the learned world. To which purpose
I have avoided using terms of art as much as possible, and taken
care to define such as I was obliged to use. Though this caution
was the less necessary at present, since many of them are become familiar
words to our language, from the great number of books wrote
in it upon philosophical subjects, and the courses of experiments, that
have of late years been given by several ingenious men. The other
view I had, was to encourage such young gentlemen as have a turn for
the mathematical sciences, to pursue those studies the more chearfully,
in order to understand in our author himself the demonstrations of the
things I here declare. And to facilitate their progress herein, I intend
to proceed still farther in the explanation of Sir Isaac Newton’s
philosophy. For as I have received very much pleasure from
perusing his writings, I hope it is no illaudable ambition to endeavour
the rendering them more easily understood, that greater numbers may
enjoy the same satisfaction.

It will perhaps be expected, that I should say something particular
of a person, to whom I must always acknowledge my self to be much
obliged. What I have to declare on this head will be but short; for
it was in the very last years of Sir Isaac’s life, that I had the honour
of his acquaintance. This happened on the following occasion.
Mr. Polenus, a Professor in the University of Padua, from a new experiment
of his, thought the common opinion about the force of moving
bodies was overturned, and the truth of Mr. Libnitz’s notion in that
matter fully proved. The contrary of what Polenus had asserted I
demonstrated in a paper, which Dr. Mead, who takes all opportunities
of obliging his friends, was pleased to shew Sir Isaac Newton
This was so well approved of by him, that he did me the honour
to become a fellow-writer with me, by annexing to what I had
written, a demonstration of his own drawn from another consideration.
When I printed my discourse in the philosophical transactions, I
put what Sir Isaac had written in a scholium by it self, that I
might not seem to usurp what did not belong to me. But I concealed
his name, not being then sufficiently acquainted with him to ask whether
he was willing I might make use of it or not. In a little time
after he engaged me to take care of the new edition he was about
making if his Principia. This obliged me to be very frequently with
him, and as he lived at some distance from me, a great number of
letters passed between us on this account. When I had the honour of
his conversation, I endeavoured to learn his thoughts upon mathematical
subjects, and something historical concerning his inventions, that I
had not been before acquainted with. I found, he had read fewer of the
modern mathematicians, than one could have expected; but his own
prodigious invention readily supplied him with what he might have an
occasion for in the pursuit of any subject he undertook. I have often heard
him censure the handling geometrical subjects by algebraic calculations;
and his book of Algebra he called by the name of Universal Arithmetic,
in opposition to the injudicious title of Geometry, which Des Cartes had
given to the treatise, wherein he shews, how the geometer may assist his
invention by such kind of computations. He frequently praised Slusius,
Barrow and Huygens for not being influenced by the false taste, which
then began to prevail. He used to commend the laudable attempt of Hugo
de Omerique to restore the ancient analysis, and very much esteemed Apollonius’s
book De sectione rationis for giving us a clearer notion of that
analysis than we had before. Dr. Barrow may be esteemed as having
shewn a compass of invention equal, if not superior to any of the
moderns, our author only excepted; but Sir Isaac Newton has
several times particularly recommended to me Huygens’s stile and
manner. He thought him the most elegant of any mathematical writer
of modern times, and the most just imitator of the antients. Of
their taste, and form of demonstration Sir Isaac always professed
himself a great admirer: I have heard him even censure himself for
not following them yet more closely than he did; and speak with regret
of his mistake at the beginning of his mathematical studies, in
applying himself to the works of Des Cartes and other algebraic writers,
before he had considered the elements of Euclide with that attention,
which so excellent a writer deserves. As to the history of his
inventions, what relates to his discoveries of the methods of series and
fluxions, and of his theory of light and colours, the world has been sufficiently
informed of already. The first thoughts, which gave rise
to his Principia, he had, when he retired from Cambridge in 1666 on
account of the plague. As he sat alone in a garden, he fell into a
speculation on the power of gravity: that as this power is not found
sensibly diminished at the remotest distance from the center of the earth,
to which we can rise, neither at the tops of the loftiest buildings, nor
even on the summits of the highest mountains; it appeared to him
reasonable to conclude, that this power must extend much farther than
was usually thought; why not as high as the moon, said he to himself?
and if so, her motion must be influenced by it; perhaps she is retained
in her orbit thereby. However, though the power of gravity
is not sensibly weakened in the little change of distance, at which we
can place our selves from the center of the earth; yet it is very possible,
that so high as the moon this power may differ much in strength from
what it is here. To make an estimate, what might be the degree of
this diminution, he considered with himself, that if the moon be retained
in her orbit by the force of gravity, no doubt the primary planets
are carried round the sun by the like power. And by comparing the
periods of the several planets with their distances from the sun, he found,
that if any power like gravity held them in their courses, its strength must
decrease in the duplicate proportion of the increase of distance. This
be concluded by supposing them to move in perfect circles concentrical
to the sun, from which the orbits of the greatest part of them do
not much differ. Supposing therefore the power of gravity, when
extended to the moon, to decrease in the same manner, he computed
whether that force would be sufficient to keep the moon in her orbit.
In this computation, being absent from books, he took the common estimate
in use among geographers and our seamen, before Norwood had measured
the earth, that 60 English miles were contained in one degree
of latitude on the surface of the earth. But as this is a very faulty
supposition, each degree containing about 69½ of our miles, his computation
did not answer expectation; whence he concluded, that some
other cause must at least join with the action of the power of gravity
on the moon. On this account he laid aside for that time any farther
thoughts upon this matter. But some years after, a letter which he
received from Dr. Hook, put him on inquiring what was the real
figure, in which a body let fall from any high place descends, taking
the motion of the earth round its axis into consideration. Such a body,
having the same motion, which by the revolution of the earth the
place has whence it falls, is to be considered as projected forward
and at the same time drawn down to the center of the earth.  This
gave occasion to his resuming his former thoughts concerning the
moon; and Picart in France having lately measured the earth, by
using his measures the moon appeared to be kept in her orbit purely
by the power of gravity; and consequently, that this power decreases
as you recede from the center of the earth in the manner our author
had formerly conjectured. Upon this principle he found the line described
by a falling body to be an ellipsis, the center of the earth being
one focus. And the primary planets moving in such orbits round
the sun, he had the satisfaction to see, that this inquiry, which he
had undertaken merely out of curiosity, could be applied to the
greatest purposes. Hereupon he composed near a dozen propositions
relating to the motion of the primary planets about the sun. Several
years after this, some discourse he had with Dr. Halley, who at
Cambridge made him a visit, engaged Sir Isaac Newton to
resume again the consideration of this subject; and gave occasion
to his writing the treatise which he published under the title of mathematical
principles of natural philosophy. This treatise, full of
such a variety of profound inventions, was composed by him from
scarce any other materials than the few propositions before mentioned,
in the space of one year and an half.

Though his memory was much decayed, I found he perfectly understood
his own writings, contrary to what I had frequently heard
in discourse from many persons. This opinion of theirs might arise
perhaps from his not being always ready at speaking on these subjects,
when it might be expected he should. But as to this, it may be
observed, that great genius’s are frequently liable to be absent, not only
in relation to common life, but with regard to some of the parts of science
they are the best informed of. Inventors seem to treasure up in their
minds, what they have found out, after another manner than those do
the same things, who have not this inventive faculty. The former,
when they have occasion to produce their knowledge, are in some measure
obliged immediately to investigate part of what they want. For
this they are not equally fit at all times: so it has often happened,
that such as retain things chiefly by means of a very strong memory,
have appeared off hand more expert than the discoverers themselves.

As to the moral endowments of his mind, they were as much to be
admired as his other talents. But this is a field I leave others to
exspatiate in. I only touch upon what I experienced myself during the
few years I was happy in his friendship. But this I immediately
discovered in him, which at once both surprized and charmed me:
Neither his extreme great age, nor his universal reputation had
rendred him stiff in opinion, or in any degree elated. Of this
I had occasion to have almost daily experience. The Remarks I
continually sent him by letters on his Principia were received with
the utmost goodness. These were so far from being any ways displeasing
to him, that on the contrary it occasioned him to speak many kind
things of me to my friends, and to honour me with a publick testimony
of his good opinion. He also approved of the following treatise, a
great part of which we read together. As many alterations were
made in the late edition of his Principia, so there would have been
many more if there had been a sufficient time. But whatever of this
kind may be thought wanting, I shall endeavour to supply in my comment
on that book. I had reason to believe he expected such a thing
from me, and I intended to have published it in his life time, after I
had printed the following discourse, and a mathematical treatise Sir
Isaac Newton had written a long while ago, containing the
first principles of fluxions, for I had prevailed on him to let that piece
go abroad. I had examined all the calculations, and prepared part
of the figures; but as the latter part of the treatise had never been
finished, he was about letting me have other papers, in order to
supply what was wanting. But his death put a stop to that design.
As to my comment on the Principia, I intend there to demonstrate
whatever Sir Isaac Newton has set down without
express proof, and to explain all such expressions in his book, as I shall
judge necessary. This comment I shall forthwith put to the press,
joined to an english translation of his Principia, which I have
had some time by me. A more particular account of my whole design
has already been published in the new memoirs of literature for
the month of march 1727.

I have presented my readers with a copy of verses on Sir Isaac
Newton, which I have just received from a young Gentleman,
whom I am proud to reckon among the number of my dearest friends.
If I had any apprehension that this piece of poetry stood in need of
an apology, I should be desirous the reader might know, that the
author is but sixteen years old, and was obliged to finish his composition
in a very short space of time. But I shall only take the liberty
to observe, that the boldness of the digressions will be best judged of
by those who are acquainted with Pindar.
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To Newton’s genius, and immortal fame

Th’ advent’rous muse with trembling pinion soars.

Thou, heav’nly truth, from thy seraphick throne

Look favourable down, do thou assist

My lab’ring thought, do thou inspire my song.

Newton, who first th’ almighty’s works display’d,

And smooth’d that mirror, in whose polish’d face

The great creator now conspicuous shines;

Who open’d nature’s adamantine gates,

And to our minds her secret powers expos’d;

Newton demands the muse; his sacred hand

Shall guide her infant steps; his sacred hand

Shall raise her to the Heliconian height,

Where, on its lofty top inthron’d, her head

Shall mingle with the Stars. Hail nature, hail,

O Goddess, handmaid of th’ ethereal power,

Now lift thy head, and to th’ admiring world

Shew thy long hidden beauty. Thee the wise

Of ancient fame, immortal Plato’s self,

The Stagyrite, and Syracusian sage,

From black obscurity’s abyss to raise,

(Drooping and mourning o’er thy wondrous works)

With vain inquiry sought. Like meteors these

In their dark age bright sons of wisdom shone:

But at thy Newton all their laurels fade,

They shrink from all the honours of their names.

So glimm’ring stars contract their feeble rays,

When the swift lustre of Aurora’s face

Flows o’er the skies, and wraps the heav’ns in light.

The Deity’s omnipotence, the cause,

Th’ original of things long lay unknown.

Alone the beauties prominent to sight

(Of the celestial power the outward form)

Drew praise and wonder from the gazing world.

As when the deluge overspread the earth,

Whilst yet the mountains only rear’d their heads

Above the surface of the wild expanse,

Whelm’d deep below the great foundations lay,

Till some kind angel at heav’n’s high command

Roul’d back the rising tides, and haughty floods,

And to the ocean thunder’d out his voice:

Quick all the swelling and imperious waves,

The foaming billows and obscuring surge,

Back to their channels and their ancient seats

Recoil affrighted: from the darksome main

Earth raises smiling, as new-born, her head,

And with fresh charms her lovely face arrays.

So his extensive thought accomplish’d first

The mighty task to drive th’ obstructing mists

Of ignorance away, beneath whose gloom

Th’ inshrouded majesty of Nature lay.

He drew the veil and swell’d the spreading scene.

How had the moon around th’ ethereal void

Rang’d, and eluded lab’ring mortals care,

Till his invention trac’d her secret steps,

While she inconstant with unsteady rein

Through endless mazes and meanders guides

In its unequal course her changing carr:

Whether behind the sun’s superior light

She hides the beauties of her radiant face,

Or, when conspicuous, smiles upon mankind,

Unveiling all her night-rejoicing charms.

When thus the silver-tressed moon dispels

The frowning horrors from the brow of night,

And with her splendors chears the sullen gloom,

While sable-mantled darkness with his veil

The visage of the fair horizon shades,

And over nature spreads his raven wings;

Let me upon some unfrequented green

While sleep sits heavy on the drowsy world,

Seek out some solitary peaceful cell,

Where darksome woods around their gloomy brows

Bow low, and ev’ry hill’s protended shade

Obscures the dusky vale, there silent dwell,

Where contemplation holds its still abode,

There trace the wide and pathless void of heav’n,

And count the stars that sparkle on its robe.

Or else in fancy’s wild’ring mazes lost

Upon the verdure see the fairy elves

Dance o’er their magick circles, or behold,

In thought enraptur’d with the ancient bards,

Medea’s baleful incantations draw

Down from her orb the paly queen of night.

But chiefly Newton let me soar with thee,

And while surveying all yon starry vault

With admiration I attentive gaze,

Thou shalt descend from thy celestial seat,

And waft aloft my high-aspiring mind,

Shalt shew me there how nature has ordain’d

Her fundamental laws, shalt lead my thought

Through all the wand’rings of th’ uncertain moon,

And teach me all her operating powers.

She and the sun with influence conjoint

Wield the huge axle of the whirling earth,

And from their just direction turn the poles,

Slow urging on the progress of the years.

The constellations seem to leave their seats,

And o’er the skies with solemn pace to move.

You, splendid rulers of the day and night,

The seas obey, at your resistless sway

Now they contract their waters, and expose

The dreary desart of old ocean’s reign.

The craggy rocks their horrid sides disclose;

Trembling the sailor views the dreadful scene,

And cautiously the threat’ning ruin shuns.

But where the shallow waters hide the sands,

There ravenous destruction lurks conceal’d,

There the ill-guided vessel falls a prey,

And all her numbers gorge his greedy jaws.

But quick returning see th’ impetuous tides

Back to th’ abandon’d shores impell the main.

Again the foaming seas extend their waves,

Again the rouling floods embrace the shoars,

And veil the horrours of the empty deep.

Thus the obsequious seas your power confess,

While from the surface healthful vapours rise

Plenteous throughout the atmosphere diffus’d,

Or to supply the mountain’s heads with springs,

Or fill the hanging clouds with needful rains,

That friendly streams, and kind refreshing show’rs

May gently lave the sun-burnt thirsty plains,

Or to replenish all the empty air

With wholsome moisture to increase the fruits

Of earth, and bless the labours of mankind.

O Newton, whether flies thy mighty soul,

How shall the feeble muse pursue through all

The vast extent of thy unbounded thought,

That even seeks th’ unseen recesses dark

To penetrate of providence immense.

And thou the great dispenser of the world

Propitious, who with inspiration taught’st

Our greatest bard to send thy praises forth;

Thou, who gav’st Newton thought; who smil’dst serene,

When to its bounds he stretch’d his swelling soul;

Who still benignant ever blest his toil,

And deign’d to his enlight’ned mind t’ appear

Confess’d around th’ interminated world:

To me O thy divine infusion grant

(O thou in all so infinitely good)

That I may sing thy everlasting works,

Thy inexhausted store of providence,

In thought effulgent and resounding verse.

O could I spread the wond’rous theme around,

Where the wind cools the oriental world,

To the calm breezes of the Zephir’s breath,

To where the frozen hyperborean blasts.

To where the boist’rous tempest-leading south

From their deep hollow caves send forth their storms.

Thou still indulgent parent of mankind,

Left humid emanations should no more

Flow from the ocean, but dissolve away

Through the long series of revolving time;

And left the vital principle decay,

By which the air supplies the springs of life;

Thou hast the fiery visag’d comets form’d

With vivifying spirits all replete,

Which they abundant breathe about the void,

Renewing the prolifick soul of things.

No longer now on thee amaz’d we call,

No longer tremble at imagin’d ills,

When comets blaze tremendous from on high,

Or when extending wide their flaming trains

With hideous grasp the skies engirdle round,

And spread the terrors of their burning locks.

For these through orbits in the length’ning space

Of many tedious rouling years compleat

Around the sun move regularly on;

And with the planets in harmonious orbs,

And mystick periods their obeysance pay

To him majestick ruler of the skies

Upon his throne of circled glory fixt.

He or some god conspicuous to the view,

Or else the substitute of nature seems,

Guiding the courses of revolving worlds.

He taught great Newton the all-potent laws

Of gravitation, by whose simple power

The universe exists. Nor here the sage

Big with invention still renewing staid.

But O bright angel of the lamp of day,

How shall the muse display his greatest toil?

Let her plunge deep in Aganippe’s waves,

Or in Castalia’s ever-flowing stream,

That re-inspired she may sing to thee,

How Newton dar’d advent’rous to unbraid

The yellow tresses of thy shining hair.

Or didst thou gracious leave thy radiant sphere,

And to his hand thy lucid splendours give,

T’ unweave the light-diffusing wreath, and part

The blended glories of thy golden plumes?

He with laborious, and unerring care,

How different and imbodied colours form

Thy piercing light, with just distinction found.

He with quick sight pursu’d thy darting rays,

When penetrating to th’ obscure recess

Of solid matter, there perspicuous saw,

How in the texture of each body lay

The power that separates the different beams.

Hence over nature’s unadorned face

Thy bright diversifying rays dilate

Their various hues: and hence when vernal rains

Descending swift have burst the low’ring clouds,

Thy splendors through the dissipating mists

In its fair vesture of unnumber’d hues

Array the show’ry bow. At thy approach

The morning risen from her pearly couch

With rosy blushes decks her virgin cheek;

The ev’ning on the frontispiece of heav’n

His mantle spreads with many colours gay;

The mid-day skies in radiant azure clad,

The shining clouds, and silver vapours rob’d

In white transparent intermixt with gold,

With bright variety of splendor cloath

All the illuminated face above.

When hoary-headed winter back retires

To the chill’d pole, there solitary sits

Encompass’d round with winds and tempests bleak

In caverns of impenetrable ice,

And from behind the dissipated gloom

Like a new Venus from the parting surge

The gay-apparell’d spring advances on;

When thou in thy meridian brightness sitt’st,

And from thy throne pure emanations flow

Of glory bursting o’er the radiant skies:

Then let the muse Olympus’ top ascend,

And o’er Thessalia’s plain extend her view,

And count, O Tempe, all thy beauties o’er.

Mountains, whose summits grasp the pendant clouds,

Between their wood-invelop’d slopes embrace

The green-attired vallies. Every flow’r

Here in the pride of bounteous nature clad

Smiles on the bosom of th’ enamell’d meads.

Over the smiling lawn the silver floods

Of fair Peneus gently roul along,

While the reflected colours from the flow’rs,

And verdant borders pierce the lympid waves,

And paint with all their variegated hue

The yellow sands beneath. Smooth gliding on

The waters hasten to the neighbouring sea.

Still the pleas’d eye the floating plain pursues;

At length, in Neptune’s wide dominion lost,

Surveys the shining billows, that arise

Apparell’d each in Phœbus’ bright attire:

Or from a far some tall majestick ship,

Or the long hostile lines of threat’ning fleets,

Which o’er the bright uneven mirror sweep,

In dazling gold and waving purple deckt;

Such as of old, when haughty Athens power

Their hideous front, and terrible array

Against Pallene’s coast extended wide,

And with tremendous war and battel stern

The trembling walls of Potidæa shook.

Crested with pendants curling with the breeze

The upright masts high bristle in the air,

Aloft exalting proud their gilded heads.

The silver waves against the painted prows

Raise their resplendent bosoms, and impearl

The fair vermillion with their glist’ring drops:

And from on board the iron-cloathed host

Around the main a gleaming horrour casts;

Each flaming buckler like the mid-day sun,

Each plumed helmet like the silver moon,

Each moving gauntlet like the light’ning’s blaze,

And like a star each brazen pointed spear.

But lo the sacred high-erected fanes,

Fair citadels, and marble-crowned towers,

And sumptuous palaces of stately towns

Magnificent arise, upon their heads

Bearing on high a wreath of silver light.

But see my muse the high Pierian hill,

Behold its shaggy locks and airy top,

Up to the skies th’ imperious mountain heaves

The shining verdure of the nodding woods.

See where the silver Hippocrene flows,

Behold each glitt’ring rivulet, and rill

Through mazes wander down the green descent,

And sparkle through the interwoven trees.

Here rest a while and humble homage pay,

Here, where the sacred genius, that inspir’d

Sublime Mæonides and Pindar’s breast,

His habitation once was fam’d to hold.

Here thou, O Homer, offer’dst up thy vows,

Thee, the kind muse Calliopæa heard,

And led thee to the empyrean feats,

There manifested to thy hallow’d eyes

The deeds of gods; thee wise Minerva taught

The wondrous art of knowing human kind;

Harmonious Phœbus tun’d thy heav’nly mind,

And swell’d to rapture each exalted sense;

Even Mars the dreadful battle-ruling god,

Mars taught thee war, and with his bloody hand

Instructed thine, when in thy sounding lines

We hear the rattling of Bellona’s carr,

The yell of discord, and the din of arms.

Pindar, when mounted on his fiery steed,

Soars to the sun, opposing eagle like

His eyes undazled to the fiercest rays.

He firmly seated, not like Glaucus’ son,

Strides his swift-winged and fire-breathing horse,

And born aloft strikes with his ringing hoofs

The brazen vault of heav’n, superior there

Looks down upon the stars, whose radiant light

Illuminates innumerable worlds,

That through eternal orbits roul beneath.

But thou all hail immortalized son

Of harmony, all hail thou Thracian bard,

To whom Apollo gave his tuneful lyre.

O might’st thou, Orpheus, now again revive,

And Newton should inform thy list’ning ear

How the soft notes, and soul-inchanting strains

Of thy own lyre were on the wind convey’d.

He taught the muse, how sound progressive floats

Upon the waving particles of air,

When harmony in ever-pleasing strains,

Melodious melting at each lulling fall,

With soft alluring penetration steals

Through the enraptur’d ear to inmost thought,

And folds the senses in its silken bands.

So the sweet musick, which from Orpheus’ touch

And fam’d Amphion’s, on the sounding string

Arose harmonious, gliding on the air,

Pierc’d the tough-bark’d and knotty-ribbed woods,

Into their saps soft inspiration breath’d

And taught attention to the stubborn oak.

Thus when great Henry, and brave Marlb’rough led

Th’ imbattled numbers of Britannia’s sons,

The trump, that swells th’ expanded cheek of fame,

That adds new vigour to the gen’rous youth,

And rouzes sluggish cowardize it self,

The trumpet with its Mars-inciting voice,

The winds broad breast impetuous sweeping o’er

Fill’d the big note of war. Th’ inspired host

With new-born ardor press the trembling Gaul;

Nor greater throngs had reach’d eternal night,

Not if the fields of Agencourt had yawn’d

Exposing horrible the gulf of fate;

Or roaring Danube spread his arms abroad,

And overwhelm’d their legions with his floods.

But let the wand’ring muse at length return;

Nor yet, angelick genius of the sun,

In worthy lays her high-attempting song

Has blazon’d forth thy venerated name.

Then let her sweep the loud-resounding lyre

Again, again o’er each melodious string

Teach harmony to tremble with thy praise.

And still thine ear O favourable grant,

And she shall tell thee, that whatever charms,

Whatever beauties bloom on nature’s face,

Proceed from thy all-influencing light.

That when arising with tempestuous rage,

The North impetuous rides upon the clouds

Dispersing round the heav’ns obstructive gloom,

And with his dreaded prohibition stays

The kind effusion of thy genial beams;

Pale are the rubies on Aurora’s lips,

No more the roses blush upon her cheeks,

Black are Peneus’ streams and golden sands

In Tempe’s vale dull melancholy sits,

And every flower reclines its languid head.

By what high name shall I invoke thee, say,

Thou life-infusing deity, on thee

I call, and look propitious from on high,

While now to thee I offer up my prayer.

O had great Newton, as he found the cause,

By which sound rouls thro’ th’ undulating air,

O had he, baffling times resistless power,

Discover’d what that subtle spirit is,

Or whatsoe’er diffusive else is spread

Over the wide-extended universe,

Which causes bodies to reflect the light,

And from their straight direction to divert

The rapid beams, that through their surface pierce.

But since embrac’d by th’ icy arms of age,

And his quick thought by times cold hand congeal’d,

Ev’n Newton left unknown this hidden power;

Thou from the race of human kind select

Some other worthy of an angel’s care,

With inspiration animate his breast,

And him instruct in these thy secret laws.

O let not Newton, to whose spacious view,

Now unobstructed, all th’ extensive scenes

Of the ethereal ruler’s works arise;

When he beholds this earth he late adorn’d,

Let him not see philosophy in tears,

Like a fond mother solitary sit,

Lamenting him her dear, and only child.

But as the wise Pythagoras, and he,

Whose birth with pride the fam’d Abdera boasts,

With expectation having long survey’d

This spot their ancient seat, with joy beheld

Divine philosophy at length appear

In all her charms majestically fair,

Conducted by immortal Newton’s hand.

So may he see another sage arise,

That shall maintain her empire: then no more

Imperious ignorance with haughty sway

Shall stalk rapacious o’er the ravag’d globe:

Then thou, O Newton, shalt protect these lines.

The humble tribute of the grateful muse;

Ne’er shall the sacrilegious hand despoil

Her laurel’d temples, whom his name preserves:

And were she equal to the mighty theme,

Futurity should wonder at her song;

Time should receive her with extended arms,

Seat her conspicuous in his rouling carr,

And bear her down to his extreamest bound.

Fables with wonder tell how Terra’s sons

With iron force unloos’d the stubborn nerves

Of hills, and on the cloud-inshrouded top

Of Pelion Ossa pil’d. But if the vast

Gigantick deeds of savage strength demand

Astonishment from men, what then shalt thou,

O what expressive rapture of the soul,

When thou before us, Newton, dost display

The labours of thy great excelling mind;

When thou unveilest all the wondrous scene,

The vast idea of th’ eternal king,

Not dreadful bearing in his angry arm

The thunder hanging o’er our trembling heads;

But with th’ effulgency of love replete,

And clad with power, which form’d th’ extensive heavens.

O happy he, whose enterprizing hand

Unbars the golden and relucid gates

Of th’ empyrean dome, where thou enthron’d

Philosophy art seated. Thou sustain’d

By the firm hand of everlasting truth

Despisest all the injuries of time;

Thou never know’st decay when all around,

Antiquity obscures her head. Behold

Th’ Egyptian towers, the Babylonian walls,

And Thebes with all her hundred gates of brass,

Behold them scatter’d like the dust abroad.

Whatever now is flourishing and proud,

Whatever shall, must know devouring age.

Euphrates’ stream, and seven-mouthed Nile,

And Danube, thou that from Germania’s soil

To the black Euxine’s far remoted shore,

O’er the wide bounds of mighty nations sweep’st

In thunder loud thy rapid floods along.

Ev’n you shall feel inexorable time;

To you the fatal day shall come; no more

Your torrents then shall shake the trembling ground,

No longer then to inundations swol’n

Th’ imperious waves the fertile pastures drench,

But shrunk within a narrow channel glide;

Or through the year’s reiterated course

When time himself grows old, your wond’rous streams

Lost ev’n to memory shall lie unknown

Beneath obscurity, and Chaos whelm’d,

But still thou sun illuminatest all

The azure regions round, thou guidest still

The orbits of the planetary spheres;

The moon still wanders o’er her changing course,

And still, O Newton, shall thy name survive:

As long as nature’s hand directs the world,

When ev’ry dark obstruction shall retire,

And ev’ry secret yield its hidden store,

Which thee dim-sighted age forbad to see

Age that alone could stay thy rising soul.

And could mankind among the fixed stars,

E’en to th’ extremest bounds of knowledge reach,

To those unknown innumerable suns,

Whose light but glimmers from those distant worlds,

Ev’n to those utmost boundaries, those bars

That shut the entrance of th’ illumin’d space

Where angels only tread the vast unknown,

Thou ever should’st be seen immortal there:

In each new sphere, each new-appearing sun,

In farthest regions at the very verge

Of the wide universe should’st thou be seen.

And lo, th’ all-potent goddess Nature takes

With her own hand thy great, thy just reward

Of immortality; aloft in air

See she displays, and with eternal grasp

Uprears the trophies of great Newton’s fame.

R. Glover.
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THE manner, in which Sir Isaac Newton
has published his philosophical discoveries,
occasions them to lie very much
concealed from all, who have not made
the mathematics particularly their study.
He once, indeed, intended to deliver,
in a more familiar way, that part
of his inventions, which relates to the system of the world;
but upon farther consideration he altered his design. For as
the nature of those discoveries made it impossible to prove
them upon any other than geometrical principles; he apprehended,
that those, who should not fully perceive the force
of his arguments, would hardly be prevailed on to exchange
their former sentiments for new opinions, so very different from
what were commonly received[1]. He therefore chose rather
to explain himself only to mathematical readers; and declined
the attempting to instruct such in any of his principles, who,
by not comprehending his method of reasoning, could not, at
the first appearance of his discoveries, have been persuaded of
their truth. But now, since Sir Isaac Newton’s doctrine
has been fully established by the unanimous approbation of all,
who are qualified to understand the same; it is without doubt
to be wished, that the whole of his improvements in philosophy
might be universally known. For this purpose therefore
I drew up the following papers, to give a general notion of our
great philosopher’s inventions to such, as are not prepared to
read his own works, and yet might desire to be informed of
the progress, he has made in natural knowledge; not doubting
but there were many, besides those, whose turn of mind had
led them into a course of mathematical studies, that would take
great pleasure in tasting of this delightful fountain of science.

2. It is a just remark, which has been made upon the human
mind, that nothing is more suitable to it, than the contemplation
of truth; and that all men are moved with a strong
desire after knowledge; esteeming it honourable to excel
therein; and holding it, on the contrary, disgraceful to mistake,
err, or be in any way deceived. And this sentiment
is by nothing more fully illustrated, than by the inclination
of men to gain an acquaintance with the operations of nature;
which disposition to enquire after the causes of things is
so general, that all men of letters, I believe, find themselves
influenced by it. Nor is it difficult to assign a reason for this,
if we consider only, that our desire after knowledge is an effect
of that taste for the sublime and the beautiful in things,
which chiefly constitutes the difference between the human
life, and the life of brutes. These inferior animals partake
with us of the pleasures, that immediately flow from the bodily
senses and appetites; but our minds are furnished with a
superior sense, by which we are capable of receiving various
degrees of delight, where the creatures below us perceive no
difference. Hence arises that pursuit of grace and elegance in
our thoughts and actions, and in all things belonging to us,
which principally creates imployment for the active mind of
man. The thoughts of the human mind are too extensive
to be confined only to the providing and enjoying of what is
necessary for the support of our being. It is this taste, which
has given rise to poetry, oratory, and every branch of literature
and science. From hence we feel great pleasure in conceiving
strongly, and in apprehending clearly, even where
the passions are not concerned. Perspicuous reasoning appears
not only beautiful; but, when set forth in its full
strength and dignity, it partakes of the sublime, and not
only pleases, but warms and elevates the soul. This is the
source of our strong desire of knowledge; and the same
taste for the sublime and the beautiful directs us to chuse
particularly the productions of nature for the subject of our
contemplation: our creator having so adapted our minds to
the condition, wherein he has placed us, that all his visible
works, before we inquire into their make, strike us with
the most lively ideas of beauty and magnificence.

3. But if there be so strong a passion in contemplative
minds for natural philosophy; all such must certainly receive a
particular pleasure in being informed of Sir Isaac Newton’s
discoveries, who alone has been able to make any great
advancements in the true course leading to natural knowledge:
whereas this important subject had before been usually
attempted with that negligence, as cannot be reflected
on without surprize. Excepting a very few, who, by
pursuing a more rational method, had gained a little true
knowledge in some particular parts of nature; the writers in
this science had generally treated of it after such a manner, as
if they thought, that no degree of certainty was ever to be hoped
for. The custom was to frame conjectures; and if upon
comparing them with things, there appeared some kind of agreement,
though very imperfect, it was held sufficient. Yet
at the same time nothing less was undertaken than intire systems,
and fathoming at once the greatest depths of nature;
as if the secret causes of natural effects, contrived and framed
by infinite wisdom, could be searched out by the slightest
endeavours of our weak understandings. Whereas the only
method, that can afford us any prospect of success in this
difficult work, is to make our enquiries with the utmost
caution, and by very slow degrees. And after our most diligent
labour, the greatest part of nature will, no doubt, for ever
remain beyond our reach.



4. This neglect of the proper means to enlarge our
knowledge, joined with the presumption to attempt, what
was quite out of the power of our limited faculties, the Lord
Bacon judiciously observes to be the great obstruction to the
progress of science[2]. Indeed that excellent person was the first,
who expresly writ against this way of philosophizing; and he
has laid open at large the absurdity of it in his admirable treatise,
intitled Novum organon scientiarum; and has there
likewise described the true method, which ought to be followed.

5. There are, saith he, but two methods, that can be
taken in the pursuit of natural knowledge. One is to make
a hasty transition from our first and slight observations on
things to general axioms, and then to proceed upon those
axioms, as certain and uncontestable principles, without farther
examination. The other method; (which he observes
to be the only true one, but to his time unattempted;) is to
proceed cautiously, to advance step by step, reserving the
most general principles for the last result of our inquiries[3].
Concerning the first of these two methods; where objections,
which happen to appear against any such axioms taken up in
haste, are evaded by some frivolous distinction, when the axiom
it self ought rather to be corrected[4]; he affirms, that
the united endeavours of all ages cannot make it successful;
because this original error in the first digestion of the mind
(as he expresses himself) cannot afterwards be remedied[5]:
whereby he would signify to us, that if we set out in a
wrong way; no diligence or art, we can use, while we
follow so erroneous a course, will ever bring us to our designed
end. And doubtless it cannot prove otherwise; for
in this spacious field of nature, if once we forsake the true
path, we shall immediately lose our selves, and must for
ever wander with uncertainty.

6. The impossibility of succeeding in so faulty a method
of philosophizing his Lordship endeavours to prove from the
many false notions and prejudices, to which the mind of man
is exposed[6]. And since this judicious writer apprehends, that
men are so exceeding liable to fall into these wrong tracts of
thinking, as to incur great danger of being misled by them,
even while they enter on the true course in pursuit of nature[7];
I trust, I shall be excused, if, by insisting a little particularly
upon this argument, I endeavour to remove whatever
prejudice of this kind, might possibly entangle the mind
of any of my readers.

7. His Lordship has reduced these prejudices and false
modes of conception under four distinct heads[8].

8. The first head contains such, as we are subject to from
the very condition of humanity, through the weakness both
of our senses, and of the faculties of the mind[9]; seeing, as
this author well observes, the subtilty of nature far exceeds
the greatest subtilty of our senses or acutest reasonings[10]. One
of the false modes of conception, which he mentions under
this head, is the forming to our selves a fanciful simplicity
and regularity in natural things. This he illustrates
by the following instances; the conceiving the planets to
move in perfect circles; the adding an orb of fire to the other
three elements, and the supposing each of these to exceed
the other in rarity, just in a decuple proportion[11].
And of the same nature is the assertion of Des Cartes,
without any proof, that all things are made up of three
kinds of matter only[12]. As also this opinion of another
philosopher; that light, in passing through different mediums,
was refracted, so as to proceed by that way, through
which it would move more speedily, than through any other[13].
The second erroneous turn of mind, taken notice of
by his Lordship under this head, is, that all men are in some
degree prone to a fondness for any notions, which they have
once imbibed; whereby they often wrest things to reconcile
them to those notions, and neglect the consideration of whatever
will not be brought to an agreement with them; just as
those do, who are addicted to judicial astrology, to the observation
of dreams, and to such-like superstitions; who carefully
preserve the memory of every incident, which serves to
confirm their prejudices, and let slip out of their minds all instances,
that make against them[14]. There is also a farther impediment
to true knowledge, mentioned under the same head by
this noble writer, which is; that whereas, through the weakness
and imperfection of our senses, many things are concealed.
from us, which have the greatest effect in producing natural
appearances; our minds are ordinarily most affected by
that, which makes the strongest impression on our organs
of sense; whereby we are apt to judge of the real importance
of things in nature by a wrong measure[15]. So, because
the figuration and the motion of bodies strike our senses more
immediately than most of their other properties, Des Cartes
and his followers will not allow any other explication of natural
appearances, than from the figure and motion of the parts
of matter. By which example we see how justly his Lordship
observes this cause of error to be the greatest of any[16];
since it has given rise to a fundamental principle in a system
of philosophy, that not long ago obtained almost an universal
reputation.

9. These are the chief branches of those obstructions to
knowledge, which this author has reduced under his first
head of false conceptions. The second head contains the
errors, to which particular persons are more especially obnoxious[17].
One of these is the consequence of a preceding observation:
that as we are exposed to be captivated by any opinions,
which have once taken possession of our minds; so in
particular, natural knowledge has been much corrupted by
the strong attachment of men to some one part of science,
of which they reputed themselves the inventers, or about
which they have spent much of their time; and hence have
been apt to conceive it to be of greater use in the study of natural
philosophy than it was: like Aristotle, who reduced
his physics to logical disputations; and the chymists, who
thought, that nature could be laid open only by the force
of their fires[18]. Some again are wholly carried away by an
excessive veneration for antiquity; others, by too great fondness
for the moderns; few having their minds so well balanced,
as neither to depreciate the merit of the ancients, nor yet to
despise the real improvements of later times[19]. To this is
added by his Lordship a difference in the genius of men,
that some are most fitted to observe the similitude, there is in
things, while others are more qualified to discern the particulars,
wherein they disagree; both which dispositions of
mind are useful: but to the prejudice of philosophy men are
apt to run into excess in each; while one sort of genius dwells
too much upon the gross and sum of things, and the other
upon trifling minutenesses and shadowy distinctions[20].

10. Under the third head of prejudices and false notions
this writer considers such, as follow from the lax and indefinite
use of words in ordinary discourse; which occasions great
ambiguities and uncertainties in philosophical debates (as another
eminent philosopher has since shewn more at large[21];) insomuch
that this our author thinks a strict defining of terms to
be scarce an infallible remedy against this inconvenience[22]. And
perhaps he has no small reason on his side: for the common
inaccurate sense of words, notwithstanding the limitations
given them by definitions, will offer it self so constantly to
the mind, as to require great caution and circumspection
for us not to be deceived thereby. Of this we have a very
eminent instance in the great disputes, that have been raised
about the use of the word attraction in philosophy; of which
we shall be obliged hereafter to make particular mention[23].
Words thus to be guarded against are of two kinds. Some
are names of things, that are only imaginary[24]; such words
are wholly to be rejected. But there are other terms, that allude
to what is real, though their signification is confused[25].
And these latter must of necessity be continued in use; but
their sense cleared up, and freed, as much as possible, from
obscurity.

11. The last general head of these errors comprehends
such, as follow from the various sects of false philosophies;
which this author divides into three sorts, the sophistical, empirical,
and superstitious[26]. By the first of these he means
a philosophy built upon speculations only without experiments[27];
by the second, where experiments are blindly adhered
to, without proper reasoning upon them[28]; and by
the third, wrong opinions of nature fixed in mens minds either
through false religions, or from misunderstanding the
declarations of the true[29].

12. These are the four principal canals, by which this judicious
author thinks, that philosophical errors have flowed in
upon us. And he rightly observes, that the faulty method of
proceeding in philosophy, against which he writes[30], is so far
from assisting us towards overcoming these prejudices; that
he apprehends it rather suited to rivet them more firmly to the
mind[31]. How great reason then has his Lordship to call this
way of philosophizing the parent of error, and the bane of
all knowledge[32]? For, indeed, what else but mistakes can so
bold and presumptuous a treatment of nature produce? have
we the wisdom necessary to frame a world, that we should
think so easily, and with so slight a search to enter into the most
secret springs of nature, and discover the original causes of
things? what chimeras, what monsters has not this preposterous
method brought forth? what schemes, or what hypothesis’s
of the subtilest wits has not a stricter enquiry into nature not
only overthrown, but manifested to be ridiculous and absurd?
Every new improvement, which we make in this science, lets
us see more and more the weakness of our guesses. Dr. Harvey,
by that one discovery of the circulation of the blood, has
dissipated all the speculations and reasonings of many ages upon
the animal oeconomy. Asellius, by detecting the lacteal
veins, shewed how little ground all physicians and philosophers
had in conjecturing, that the nutritive part of the
aliment was absorbed by the mouths of the veins spread upon
the bowels: and then Pecquet, by finding out the thoracic
duct, as evidently proved the vanity of the opinion, which
was persisted in after the lacteal vessels were known, that the
alimental juice was conveyed immediately to the liver, and
there converted into blood.



13. As these things set forth the great absurdity of proceeding
in philosophy on conjectures, by informing us how far
the operations of nature are above our low conceptions; so
on the other hand, such instances of success from a more
judicious method shew us, that our bountiful maker has
not left us wholly without means of delighting our selves in
the contemplation of his wisdom.  That by a just way of
inquiry into nature, we could not fail of arriving at discoveries
very remote from our apprehensions; the Lord Bacon himself
argues from the experience of mankind. If, says he, the
force of guns should be described to any one ignorant of
them, by their effects only, he might reasonably suppose, that
those engines of destruction were only a more artificial composition,
than he knew, of wheels and other mechanical
powers: but it could never enter his thoughts, that their
immense force should be owing to a peculiar substance,
which would enkindle into so violent an explosion, as we
experience in gunpowder: since he would no where see
the least example of any such operation; except perhaps in
earthquakes and thunder, which he would doubtless look
upon as exalted powers of nature, greatly surpassing any art of
man to imitate. In the same manner, if a stranger to the original
of silk were shewn a garment made of it, he would be
very far from imagining so strong a substance to be spun out
of the bowels of a small worm; but must certainly believe
it either a vegetable substance, like flax or cotton; or the natural
covering of some animal, as wool is of sheep. Or had
we been told, before the invention of the magnetic needle
among us, that another people was in possession of a certain
contrivance, by which they were inabled to discover the position
of the heavens, with vastly more ease, than we could
do; what could have been imagined more, than that they
were provided with some fitter astronomical instrument for
this purpose than we? That any stone should have so amazing
a property, as we find in the magnet, must have been
the remotest from our thoughts[33].

14. But what surprizing advancements in the knowledge
of nature may be made by pursuing the true course in philosophical
inquiries; when those searches are conducted by a
genius equal to so divine a work, will be best understood by
considering Sir Isaac Newton discoveries. That my’s
reader may apprehend as just a notion of these, as can be conveyed
to him, by the brief account, which I intend to lay before
him; I have set apart this introduction for explaining, in
the fullest manner I am able, the principles, whereon Sir
Isaac Newton proceeds. For without a clear conception
of these, it is impossible to form any true idea of the
singular excellence of the inventions of this great philosopher.

15. The principles then of this philosophy are; upon no consideration
to indulge conjectures concerning the powers and
laws of nature, but to make it our endeavour with all diligence
to search out the real and true laws, by which the constitution
of things is regulated. The philosopher’s first care must be
to distinguish, what he sees to be within his power, from what
is beyond his reach; to assume no greater degree of knowledge,
than what he finds himself possessed of; but to advance
by slow and cautious steps; to search gradually into natural causes;
to secure to himself the knowledge of the most immediate
cause of each appearance, before he extends his views farther
to causes more remote. This is the method, in which philosophy
ought to be cultivated; which does not pretend to so great
things, as the more airy speculations; but will perform abundantly
more: we shall not perhaps seem to the unskilful to
know so much, but our real knowledge will be greater. And
certainly it is no objection against this method, that some others
promise, what is nearer to the extent of our wishes: since
this, if it will not teach us all we could desire to be informed
of, will however give us some true light into nature; which no
other can do. Nor has the philosopher any reason to think
his labour lost, when he finds himself stopt at the cause first
discovered by him, or at any other more remote cause, short
of the original: for if he has but sufficiently proved any one
cause, he has entered so far into the real constitution of things,
has laid a safe foundation for others to work upon, and
has facilitated their endeavours in the search after yet more
distant causes; and besides, in the mean time he may apply
the knowledge of these intermediate causes to many useful
purposes. Indeed the being able to make practical deductions
from natural causes, constitutes the great distinction
between the true philosophy and the false. Causes assumed
upon conjecture, must be so loose and undefined,
that nothing particular can be collected from them. But those
causes, which are brought to light by a strict examination
of things, will be more distinct. Hence it appears to have
been no unuseful discovery, that the ascent of water in pumps
is owing to the pressure of the air by its weight or spring;
though the causes, which make the air gravitate, and render
it elastic, be unknown: for notwithstanding we are ignorant
of the original, whence these powers of the air are derived;
yet we may receive much advantage from the bare
knowledge of these powers. If we are but certain of the degree
of force, wherewith they act, we shall know the extent of
what is to be expected from them; we shall know the greatest
height, to which it is possible by pumps to raise water; and
shall thereby be prevented from making any useless efforts
towards improving these instruments beyond the limits prescribed
to them by nature; whereas without so much knowledge
as this, we might probably have wasted in attempts of
this kind much time and labour. How long did philosophers
busy themselves to no purpose in endeavouring to perfect
telescopes, by forming the glasses into some new figure; till
Sir Isaac Newton demonstrated, that the effects of telescopes
were limited from another cause, than was supposed;
which no alteration in the figure of the glasses could remedy?
What method Sir Isaac Newton himself has found for
the improvement of telescopes shall be explained hereafter[34].
But at present I shall proceed to illustrate, by some farther instances,
this distinguishing character of the true philosophy, which
we have now under consideration. It was no trifling discovery,
that the contraction of the muscles of animals puts their
limbs in motion, though the original cause of that contraction
remains a secret, and perhaps may always do so; for the
knowledge of thus much only has given rise to many speculations
upon the force and artificial disposition of the muscles,
and has opened no narrow prospect into the animal fabrick.
The finding out, that the nerves are great agents in this action,
leads us yet nearer to the original cause, and yields us a
wider view of the subject. And each of these steps affords us
assistance towards restoring this animal motion, when impaired
in our selves, by pointing out the seats of the injuries, to
which it is obnoxious. To neglect all this, because we can
hitherto advance no farther, is plainly ridiculous. It is
confessed by all, that Galileo greatly improved philosophy,
by shewing, as we shall relate hereafter, that the power
in bodies, which we call gravity, occasions them to move
downwards with a velocity equably accelerated[35]; and that
when any body is thrown forwards, the same power obliges it
to describe in its motion that line, which is called by geometers
a parabola[36]: yet we are ignorant of the cause, which makes
bodies gravitate. But although we are unacquainted with
the spring, whence this power in nature is derived, nevertheless
we can estimate its effects. When a body falls perpendicularly,
it is known, how long time it takes in descending from
any height whatever: and if it be thrown forwards, we know
the real path, which it describes; we can determine in what
direction, and with what degree of swiftness it must be projected,
in order to its striking against any object desired; and
we can also ascertain the very force, wherewith it will strike.
Sir Isaac Newton has farther taught, that this power of
gravitation extends up to the moon, and causes that planet to
gravitate as much towards the earth, as any of the bodies, which
are familiar to us, would, if placed at the same distance[37]:
he has proved likewise, that all the planets gravitate towards
the sun, and towards one another; and that their respective
motions follow from this gravitation. All this he has demonstrated
upon indisputable geometrical principles, which cannot
be rendered precarious for want of knowing what it is, which
causes these bodies thus mutually to gravitate: any more than
we can doubt of the propensity in all the bodies about us, to
descend towards the earth; or can call in question the forementioned
propositions of Galileo, which are built upon
that principle. And as Galileo has shewn more fully,
than was known before, what effects were produced in the
motion of bodies by their gravitation towards the earth; so
Sir Isaac Newton, by this his invention, has much advanced
our knowledge in the celestial motions. By discovering
that the moon gravitates towards the sun, as well as towards
the earth; he has laid open those intricacies in the moon’s
motion, which no astronomer, from observations only, could
ever find out[38]: and one kind of heavenly bodies, the comets,
have their motion now clearly ascertained; whereof we had
before no true knowledge at all[39].

16. Doubtless it might be expected, that such surprizing
success should have silenced, at once, every cavil. But we
have seen the contrary. For because this philosophy professes
modestly to keep within the extent of our faculties, and is
ready to confess its imperfections, rather than to make any
fruitless attempts to conceal them, by seeking to cover the defects
in our knowledge with the vain ostentation of rash and
groundless conjectures; hence has been taken an occasion to
insinuate that we are led to miraculous causes, and the occult
qualities of the schools.

17. But the first of these accusations is very extraordinary.
If by calling these causes miraculous nothing more is
meant than only, that they often appear to us wonderful and
surprizing, it is not easy to see what difficulty can be raised
from thence; for the works of nature discover every where
such proofs of the unbounded power, and the consummate
wisdom of their author, that the more they are known, the
more they will excite our admiration: and it is too manifest
to be insisted on, that the common sense of the word miraculous
can have no place here, when it implies what is above
the ordinary course of things. The other imputation, that
these causes are occult upon the account of our not perceiving
what produces them, contains in it great ambiguity. That
something relating to them lies hid, the followers of this
philosophy are ready to acknowledge, nay desire it should
be carefully remarked, as pointing out proper subjects for future
inquiry. But this is very different from the proceeding
of the schoolmen in the causes called by them occult. For
as their occult qualities were understood to operate in a manner
occult, and not apprehended by us; so they were obtruded
upon us for such original and essential properties in bodies,
as made it vain to seek any farther cause; and a greater
power was attributed to them, than any natural appearances
authorized. For instance, the rise of water in pumps was ascribed
to a certain abhorrence of a vacuum, which they thought
fit to assign to nature. And this was so far a true observation,
that the water does move, contrary to its usual course, into
the space, which otherwise would be left void of any sensible
matter; and, that the procuring such a vacuity was the apparent
cause of the water’s ascent. But while we were not in
the least informed how this power, called an abhorrence of a
vacuum, produced the visible effects; instead of making any
advancement in the knowledge of nature, we only gave
an artificial name to one of her operations: and when the
speculation was pushed so beyond what any appearances required,
as to have it concluded, that this abhorrence of a vacuum
was a power inherent in all matter, and so unlimited as
to render it impossible for a vacuum to exist at all; it then
became a much greater absurdity, in being made the foundation
of a most ridiculous manner of reasoning; as at length
evidently appeared, when it came to be discovered, that this
rise of the water followed only from the pressure of the air,
and extended it self no farther, than the power of that cause.
The scholastic stile in discoursing of these occult qualities,
as if they were essential differences in the very substances,
of which bodies consisted, was certainly very absurd; by
reason it tended to discourage all farther inquiry. But no
such ill consequences can follow from the considering of
any natural causes, which confessedly are not traced up to
their first original. How shall we ever come to the knowledge
of the several original causes of things, otherwise than
by storing up all intermediate causes which we can discover?
Are all the original and essential properties of matter so very
obvious, that none of them can escape our first view? This is
not probable. It is much more likely, that, if some of the
essential properties are discovered by our first observations, a
stricter examination should bring more to light.

18. But in order to clear up this point concerning the
essential properties of matter, let us consider the subject a little
distinctly. We are to conceive, that the matter, out of
which the universe of things is formed, is furnished with certain
qualities and powers, whereby it is rendered fit to answer
the purposes, for which it was created. But every property,
of which any particle of this matter is in it self possessed, and
which is not barely the consequence of the union of this particle
with other portions of matter, we may call an essential property:
whereas all other qualities or attributes belonging to
bodies, which depend on their particular frame and composition,
are not essential to the matter, whereof such bodies are
made; because the matter of these bodies will be deprived
of those qualities, only by the dissolution of the body, without
working any change in the original constitution of one
single particle of this mass of matter. Extension we apprehend
to be one of these essential properties, and impenetrability
another. These two belong universally to all matter; and
are the principal ingredients in the idea, which this word
matter usually excites in the mind. Yet as the idea, marked
by this name, is not purely the creature of our own understandings,
but is taken for the representation of a certain
substance without us; if we should discover, that every part
of the substance, in which we find these two properties,
should likewise be endowed universally with any other essential
qualities; all these, from the time they come to our notice,
must be united under our general idea of matter. How
many such properties there are actually in all matter we know
not; those, of which we are at present apprized, have been
found out only by our observations on things; how many
more a farther search may bring to light, no one can say;
nor are we certain, that we are provided with sufficient methods
of perception to discern them all. Therefore, since we
have no other way of making discoveries in nature, but by
gradual inquiries into the properties of bodies; our first step
must be to admit without distinction all the properties, which
we observe; and afterwards we must endeavour, as far as we
are able, to distinguish between the qualities, wherewith the
very substances themselves are indued, and those appearances,
which result from the structure only of compound bodies.
Some of the properties, which we observe in things, are the
attributes of particular bodies only; others universally belong
to all, that fall under our notice. Whether some of the
qualities and powers of particular bodies, be derived from different
kinds of matter entring their composition, cannot, in
the present imperfect state of our knowledge, absolutely be
decided; though we have not yet any reason to conclude,
but that all the bodies, with which we converse, are framed
out of the very same kind of matter, and that their distinct
qualities are occasioned only by their structure; through the variety
whereof the general powers of matter are caused to produce
different effects. On the other hand, we should not hastily
conclude, that whatever is found to appertain to all matter,
which falls under our examination, must for that reason
only be an essential property thereof, and not be derived from
some unseen disposition in the frame of nature. Sir Isaac
Newton has found reason to conclude, that gravity is a property
universally belonging to all the perceptible bodies in the
universe, and to every particle of matter, whereof they are
composed. But yet he no where asserts this property to be
essential to matter. And he was so far from having any design
of establishing it as such, that, on the contrary, he has
given some hints worthy of himself at a cause for it[40]; and expresly
says, that he proposed those hints to shew, that he had
no such intention[41].

19. It appears from hence, that it is not easy to determine,
what properties of bodies are essentially inherent in the
matter, out of which they are made, and what depend upon
their frame and composition. But certainly whatever properties
are found to belong either to any particular systems of
matter, or universally to all, must be considered in philosophy;
because philosophy will be otherwise imperfect. Whether
those properties can be deduced from some other appertaining
to matter, either among those, which are already known,
or among such as can be discovered by us, is afterwards to be
sought for the farther improvement of our knowledge. But this
inquiry cannot properly have place in the deliberation about admitting
any property of matter or bodies into philosophy; for
that purpose it is only to be considered, whether the existence
of such a property has been justly proved or not. Therefore
to decide what causes of things are rightly received into natural
philosophy, requires only a distinct and clear conception
of what kind of reasoning is to be allowed of as convincing,
when we argue upon the works of nature.

20. The proofs in natural philosophy cannot be so absolutely
conclusive, as in the mathematics. For the subjects of
that science are purely the ideas of our own minds. They
may be represented to our senses by material objects, but they
are themselves the arbitrary productions of our own thoughts;
so that as the mind can have a full and adequate knowledge
of its own ideas, the reasoning in geometry can be rendered
perfect. But in natural knowledge the subject of our contemplation
is without us, and not so compleatly to be known:
therefore our method of arguing must fall a little short of absolute
perfection. It is only here required to steer a just course
between the conjectural method of proceeding, against which
I have so largely spoke; and demanding so rigorous a proof, as
will reduce all philosophy to mere scepticism, and exclude all
prospect of making any progress in the knowledge of nature.

21. The concessions, which are to be allowed in this science,
are by Sir Isaac Newton included under a very
few simple precepts.



22. The first is, that more causes are not to be received
into philosophy, than are sufficient to explain the appearances
of nature. That this rule is approved of unanimously, is evident
from those expressions so frequent among all philosophers,
that nature does nothing in vain; and that a variety
of means, where fewer would suffice, is needless. And
certainly there is the highest reason for complying with this
rule. For should we indulge the liberty of multiplying,
without necessity, the causes of things, it would reduce
all philosophy to mere uncertainty; since the only proof,
which we can have, of the existence of a cause, is the necessity
of it for producing known effects. Therefore where
one cause is sufficient, if there really should in nature be
two, which is in the last degree improbable, we can have no
possible means of knowing it, and consequently ought not to
take the liberty of imagining, that there are more than one.

23. The second precept is the direct consequence of the
first, that to like effects are to be ascribed the same causes.
For instance, that respiration in men and in brutes is brought
about by the same means; that bodies descend to the earth
here in Europe, and in America from the same principle;
that the light of a culinary fire, and of the sun have the same
manner of production; that the reflection of light is effected in
the earth, and in the planets by the same power; and the like.

24. The third of these precepts has equally evident reason
for it. It is only, that those qualities, which in the same
body can neither be lessened nor increased, and which belong
to all bodies that are in our power to make trial upon, ought
to be accounted the universal properties of all bodies whatever.

25. In this precept is founded that method of arguing by
induction, without which no progress could be made in natural
philosophy.  For as the qualities of bodies become
known to us by experiments only; we have no other way of
finding the properties of such bodies, as are out of our reach
to experiment upon, but by drawing conclusions from those
which fall under our examination. The only caution here
required is, that the observations and experiments, we argue
upon, be numerous enough, and that due regard be paid to
all objections, that occur, as the Lord Bacon very judiciously
directs[42]. And this admonition is sufficiently complied
with, when by virtue of this rule we ascribe impenetrability
and extension to all bodies, though we have no sensible
experiment, that affords a direct proof of any of the celestial
bodies being impenetrable; nor that the fixed stars
are so much as extended.  For the more perfect our instruments
are, whereby we attempt to find their visible magnitude,
the less they appear; insomuch that all the sensible
magnitude, which we observe in them, seems only to be an
optical deception by the scattering of their light. However,
I suppose no one will imagine they are without any magnitude,
though their immense distance makes it undiscernable
by us. After the same manner, if it can be proved, that all
bodies here gravitate towards the earth, in proportion to the
quantity of solid matter in each; and that the moon gravitates
to the earth likewise, in proportion to the quantity of matter
in it; and that the sea gravitates towards the moon, and all
the planets towards each other; and that the very comets have
the same gravitating faculty; we shall have as great reason to
conclude by this rule, that all bodies gravitate towards each
other. For indeed this rule will more strongly hold in this
case, than in that of the impenetrability of bodies; because
there will more instances be had of bodies gravitating, than
of their being impenetrable.

25. This is that method of induction, whereon all philosophy
is founded; which our author farther inforces by
this additional precept, that whatever is collected from this
induction, ought to be received, notwithstanding any conjectural
hypothesis to the contrary, till such times as it shall be
contradicted or limited by farther observations on nature.
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BOOK I.

Concerning the

MOTION of BODIES

IN GENERAL.



Chap. I.

Of the LAWS of MOTION.
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HAVING thus explained Sir Isaac
Newton’s method of reasoning in
philosophy, I shall now proceed to
my intended account of his discoveries.
These are contained in two treatises.
In one of them, the Mathematical
principles of natural philosophy,
his chief design is to shew by what laws the heavenly
motions are regulated; in the other, his Optics, he discourses
of the nature of light and colours, and of the action between
light and bodies. This second treatise is wholly confined to
the subject of light: except some conjectures proposed at the
end concerning other parts of nature, which lie hitherto more
concealed. In the other treatise our author was obliged to
smooth the way to his principal intention, by explaining many
things of a more general nature: for even some of the most
simple properties of matter were scarce well established at that
time. We may therefore reduce Sir Isaac Newton’s doctrine
under three general heads; and I shall accordingly divide
my account into three books. In the first I shall speak
of what he has delivered concerning the motion of bodies,
without regard to any particular system of matter; in the second
I shall treat of the heavenly motions; and the third
shall be employed upon light.

2. In the first part of my design, we must begin with an
account of the general laws of motion.

3. These laws are some universal affections and properties
of matter drawn from experience, which are made use
of as axioms and evident principles in all our arguings upon the
motion of bodies. For as it is the custom of geometers to
assume in their demonstrations some propositions, without
exhibiting the proof of them; so in philosophy, all our reasoning
must be built upon some properties of matter, first admitted
as principles whereon to argue. In geometry these axioms
are thus assumed, on account of their being so evident
as to make any proof in form needless. But in philosophy
no properties of bodies can be in this manner received for self-evident;
since it has been observed above, that we can conclude
nothing concerning matter by any reasonings upon its
nature and essence, but that we owe all the knowledge, we
have thereof, to experience. Yet when our observations on
matter have inform’d us of some of its properties, we may securely
reason upon them in our farther inquiries into nature.
And these laws of motion, of which I am here to speak, are
found so universally to belong to bodies, that there is no motion
known, which is not regulated by them. These are by
Sir Isaac Newton reduced to three[43].

4. The first law is, that all bodies have such an indifference
to rest, or motion, that if once at rest they remain so, till disturbed
by some power acting upon them: but if once put
in motion, they persist in it; continuing to move right forwards
perpetually, after the power, which gave the motion,
is removed; and also preserving the same degree of velocity
or quickness, as was first communicated, not stopping or remitting
their course, till interrupted or otherwise disturbed by
some new power impressed.

5. The second law of motion is, that the alteration of the
state of any body, whether from rest to motion, or from motion
to rest, or from one degree of motion to another, is always
proportional to the force impressed. A body at rest, when
acted upon by any power, yields to that power, moving in
the same line, in which the power applied is directed; and
moves with a less or greater degree of velocity, according to
the degree of the power; so that twice the power shall communicate
a double velocity, and three times the power a
threefold velocity. If the body be moving, and the power
impressed act upon the body in the direction of its motion,
the body shall receive an addition to its motion, as great as
the motion, into which that power would have put it from a
state of rest; but if the power impressed upon a moving body
act directly opposite to its former motion, that power shall
then take away from the body’s motion, as much as in the other
case it would have added to it. Lastly, if the power be
impressed obliquely, there will arise an oblique motion differing
more or less from the former direction, according as
the new impression is greater or less. For example, if the body
A (in fig. 1.) be moving in the direction A B, and when it is
at the point A, a power be impressed upon it in the direction
A C, the body shall from henceforth neither move in its first
direction A B, nor in the direction of the adventitious power,
but shall take a course as A D between them: and if the
power last impressed be just equal to that, which first gave
to the body its motion; the line A D shall pass in the middle
between A B and A C, dividing the angle under B A C into
two equal parts; but if the power last impressed be greater
than the first, the line A D shall incline most to A C; whereas
if the last impression be less than the first, the line A D shall
incline most to A B. To be more particular, the situation of
the line A D is always to be determined after this manner.
Let A E be the space, which the body would have moved
through in the line A B during any certain portion of time;
provided that body, when at A, had received no second impulse.
Suppose likewise, that A F is the part of the line A C,
through which the body would have moved during an equal
portion of time, if it had been at rest in A, when it received
the impulse in the direction A C: then if from E be drawn
a line parallel to, or equidistant from A C, and from F another
line parallel to A B, those two lines will meet in the
line A D.

6. The third and last of these laws of motion is, that
when any body acts upon another, the action of that body
upon the other is equalled by the contrary reaction of that
other body upon the first.

7. These laws of motion are abundantly confirmed by
this, that all the deductions made from them, in relation to
the motion of bodies, how complicated soever, are found to
agree perfectly with observation. This shall be shewn more
at large in the next chapter. But before we proceed to so
diffusive a proof; I chuse here to point out those appearances
of bodies, whereby the laws of motion are first suggested
to us.

8. Daily observation makes it appear to us, that any
body, which we once see at rest, never puts it self into fresh
motion; but continues always in the same place, till removed
by some power applied to it.

9. Again, whenever a body is once in motion, it continues
in that motion some time after the moving power has quitted
it, and it is left to it self. Now if the body continue to move
but a single moment, after the moving power has left it, there
can no reason be assigned, why it should ever stop without
some external force. For it is plain, that this continuance of
the motion is caused only by the body’s having already moved,
the sole operation of the power upon the body being the
putting it in motion; therefore that motion continued will equally
be the cause of its farther motion, and so on without
end. The only doubt that can remain, is, whether this motion
communicated continues intire, after the power, that caused
it, ceases to act; or whether it does not gradually languish and
decrease. And this suspicion cannot be removed by a transient
and slight observation on bodies, but will be fully cleared
up by those more accurate proofs of the laws of motion,
which are to be considered in the next chapter.

10. Lastly, bodies in motion appear to affect a straight
course without any deviation, unless when disturbed by some
adventitious power acting upon them. If a body be thrown
perpendicularly upwards or downwards, it appears to continue
in the same straight line during the whole time of its motion.
If a body be thrown in any other direction, it is found to deviate
from the line, in which it began to move, more and
more continually towards the earth, whither it is directed
by its weight: but since, when the weight of a body does
not alter the direction of its motion, it always moves in
a straight line, without doubt in this other case the body’s,
declining from its first course is no more, than what is caused
by its weight alone. As this appears at first sight to be
unquestionable, so we shall have a very distinct proof thereof
in the next chapter, where the oblique motion of bodies will
be particularly considered.

11. Thus we see how the first of the laws of motion
agrees with what appears to us in moving bodies. But
here occurs this farther consideration, that the real and absolute
motion of any body is not visible to us: for we
are our selves also in constant motion along with the
earth whereon we dwell; insomuch that we perceive bodies
to move so far only, as their motion is different from
our own. When a body appears to us to lie at rest, in
reality it only continues the motion, it has received, without
putting forth any power to change that motion. If we
throw a body in the course or direction, wherein we are
carried our selves; so much motion as we seem to have
given to the body, so much we have truly added to the
motion, it had, while it appeared to us to be at rest. But
if we impel a body the contrary way, although the body
appears to us to have received by such an impulse as much
motion, as when impelled the other way; yet in this case we
have taken from the body so much real motion, as we seem
to have given it. Thus the motion, which we see in bodies,
is not their real motion, but only relative with respect to us;
and the forementioned observations only shew us, that this
first law of motion has place in this relative or apparent
motion. However, though we cannot make any observation
immediately on the absolute motion of bodies, yet by
reasoning upon what we observe in visible motion, we can
discover the properties and effects of real motion.

12. With regard to this first law of motion, which is
now under consideration, we may from the foregoing observations
most truly collect, that bodies are disposed to continue
in the absolute motion, which they have once received,
without increasing or diminishing their velocity. When a
body appears to us to lie at rest, it really preserves without
change the motion, which it has in common with our selves:
and when we put it into visible motion, and we see it continue
that motion; this proves, that the body retains that degree
of its absolute motion, into which it is put by our acting
upon it: if we give it such an apparent motion, which adds
to its real motion, it preserves that addition; and if our acting
on the body takes off from its real motion, it continues
afterwards to move with no more real motion, than we have
left it.

13. Again, we do not observe in bodies any disposition or
power within themselves to change the direction of their motion;
and if they had any such power, it would easily be discovered.
For suppose a body by the structure or disposition
of its parts, or by any other circumstance in its make, was indued
with a power of moving it self; this self-moving principle,
which should be thus inherent in the body, and not
depend on any thing external, must change the direction
wherein it would act, as often as the position of the body
was changed: so that for instance, if a body was lying before
me in such a position, that the direction, wherein this
principle disposes the body to move, was pointed directly from
me; if I then gradually turned the body about, the direction
of this self-moving principle would no longer be pointed directly
from me, but would turn about along with the body.
Now if any body, which appears to us at rest, were furnished
with any such self-moving principle; from the body’s appearing
without motion we must conclude, that this self-moving
principle lies directed the same way as the earth is carrying
the body; and such a body might immediately be put
into visible motion only by turning it about in any degree,
that this self-moving principle might receive a different direction.

14. From these considerations it very plainly follows,
that if a body were once absolutely at rest; not being furnished
with any principle, whereby it could put it self into
motion, it must for ever continue in the same place, till acted
upon by something external: and also that when a body is put
into motion, it has no power within it self to make any
change in the direction of that motion; and consequently
that the body must move on straight forward without declining
any way whatever. But it has before been shewn, that
bodies do not appear to have in themselves any power to
change the velocity of their motion: therefore this first law
of motion has been illustrated and confirmed, as much as can
be from the transient observations, which have here been discoursed
upon; and in the next chapter all this will be farther
established by more correct observations.

15. But I shall now pass to the second law of motion;
wherein, when it is asserted, that the velocity, with which
any body is moved by the action of a power upon it, is proportional
to that power; the degree of power is supposed to
be measured by the greatness of the body, which it can move
with a given celerity. So that the sense of this law is, that
if any body were put into motion with that degree of swiftness,
as to pass in one hour the length of a thousand yards;
the power, which would give the same degree of velocity to
a body twice as great, would give this lesser body twice the
velocity, causing it to describe in the same space of an hour
two thousand yards. But by a body twice as great as another,
I do not here mean simply of twice the bulk, but one that
contains a double quantity of solid matter.

16. Why the power, which can move a body twice as great
as another with the same degree of velocity, should be called
twice as great as the power, which can give the lesser body
the same velocity, is evident. For if we should suppose the
greater body to be divided into two equal parts, each equal
to the lesser body, each of these halves will require the same
degree of power to move them with the velocity of the lesser
body, as the lesser body it self requires; and therefore both
those halves, or the whole greater body, will require the
moving power to be doubled.

17. That the moving power being in this sense doubled,
should just double likewise the velocity of the same body,
seems near as evident, if we consider, that the effect of the
power applied must needs be the same, whether that power
be applied to the body at once, or in parts. Suppose then the
double power not applied to the body at once, but half of it
first, and afterwards the other half; it is not conceivable for
what reason the half last applied should come to have a different
effect upon the body, from that which is applied first;
as it must have, if the velocity of the body was not just doubled
by the application of it. So far as experience can determine,
we see nothing to favour such a supposition. We cannot
indeed (by reason of the constant motion of the earth)
make trial upon any body perfectly at rest, whereby to see
whether a power applied in that case would have a different
effect, from what it has, when the body is already moving;
but we find no alteration in the effect of the same power on
account of any difference there may be in the motion of the
body, when the power is applied. The earth does not always
carry bodies with the same degree of velocity; yet we
find the visible effects of any power applied to the same body
to be, at all times the very same: and a bale of goods, or
other moveable body lying in a ship is as easily removed
from place to place, while the ship is under sail, if its motion
be steady, as when it is fixed at anchor.



18. Now this experience is alone sufficient to shew to us
the whole of this law of motion.

19. Since we find, that the same power will always produce
the same change in the motion of any body, whether
that body were before moving with a swifter or slower motion;
the change wrought in the motion of a body depends
only on the power applied to it, without any regard to the
body’s former motion: and therefore the degree of motion,
which the body already possesses, having no influence on the
power applied to disturb its operation, the effects of the
same power will not only be the same in all degrees of motion
of the body; but we have likewise no reason to doubt,
but that a body perfectly at rest would receive from any power
as much motion, as would be equivalent to the effect of the
same power applied to that body already in motion.

20. Again, suppose a body being at rest, any number of
equal powers should be successively applied to it; pushing it
forward from time to time in the same course or direction.
Upon the application of the first power the body would begin
to move; when the second power was applied, it appears from
what has been said, that the motion of the body would become
double; the third power would treble the motion of the
body; and so on, till after the operation of the last power the
motion of the body would be as many times the motion,
which the first power gave it, as there are powers in number.
and the effect of this number of powers will be always the
same, without any regard to the space of time taken up in
applying them: so that greater or lesser intervals between
the application of each of these powers will produce no difference
at all in their effects. Since therefore the distance of
time between the action of each power is of no consequence;
without doubt the effect will still be the same, though the
powers should all be applied at the very same instant; or although
a single power should be applied equal in strength to
the collective force of all these powers. Hence it plainly follows,
that the degree of motion, into which any body will
be put out of a state of rest by any power, will be proportional
to that power. A double power will give twice the velocity,
a treble power three times the velocity, and so on. The
foregoing reasoning will equally take place, though the body
were not supposed to be at rest, when the powers began to
be applied to it; provided the direction, in which the powers
were applied, either conspired with the action of the body, or
was directly opposite to it. Therefore if any power be applied
to a moving body, and act upon the body either in
the direction wherewith the body moves, so as to accelerate
the body; or if it act directly opposite to the motion of the
body, so as to retard it: in both these cases the change of
motion will be proportional to the power applied; nay, the
augmentation of the motion in one case, and the diminution
thereof in the other, will be equal to that degree of
motion, into which the same power would put the body, had
it been at rest, when the power was applied.



21. Farther, a power may be so applied to a moving
body, as to act obliquely to the motion of the body. And
the effects of such an oblique motion may be deduced from
this observation; that as all bodies are continually moving along
with the earth, we see that the visible effects of the same
power are always the same, in whatever direction the power
acts: and therefore the visible effects of any power upon a
body, which seems only to be at rest, is always to appearance
the same as the real effect would be upon a body truly at rest.
Now suppose a body were moving along the line A B (in
fig. 2.) and the eye accompanied it with an equal motion in
the line C D equidistant from A B; so that when the body is
at A, the eye shall be at C, and when the body is advanced to
E in the line A B, the eye shall be advanced to F in the line
C D, the distances A E and C F being equal. It is evident,
that here the body will appear to the eye to be at rest; and
the line F E G drawn from the eye through the body shall seem
to the eye to be immoveable; though as the body and eye
move forward together, this line shall really also move; so
that when the body shall be advanced to H and the eye to K,
the line F E G shall be transferred into the situation K H L,
this line K H L being equidistant from F E G. Now if the body
when at E were to receive an impulse in the direction of
the line F E G; while the eye is moving on from F to K and
carrying along with it the line F E G, the body will appear to
the eye to move along this line F E G: for this is what has just
now been said; that while bodies are moving along with the
earth, and the spectator’s eye partakes of the same motion,
the effect of any power upon the body will appear to be what
it would really have been, had the body been truly at rest,
when the power was applied. From hence it follows, that
when the eye is advanced to K, the body will appear somewhere
in the line K H L. Suppose it appear in M; then it is
manifest, from what has been premised at the beginning of
this paragraph, that the distance H M is equal to what the
body would have run upon the line E G, during the time,
wherein the eye has passed from F to K, provided that the body
had been at rest, when acted upon in E. If it be farther
asked, after what manner the body has moved from E to M?
I answer, through a straight line; for it has been shewn above
in the explication of the first law of motion, that a moving
body, from the time it is left to it self, will proceed on in
one continued straight line.

22. If E N be taken equal to H M and N M be drawn;
since H M is equidistant from E N, N M will be equidistant
from E H. Therefore the effect of any power upon a moving
body, when that power acts obliquely to the motion of the
body, is to be determined in this manner. Suppose the body
is moving along the straight line A E B, if when the body is
come to E, a power gives it an impulse in the direction of the
line E G, to find what course the body will afterwards take
we must proceed thus. Take in E B any length E H, and in
E G take such a length E N, that if the body had been at rest
in E, the power applied to it would have caused it to move
over E N in the same space of time, as it would have employed
in passing over E H, if the power had not acted at all upon it.
Then draw H L equidistant from E G, and N M equidistant
from E B. After this, if a line be drawn from E to the
point M, where these two lines meet, the line E M will be the
course into which the body will be put by the action of the
power upon it at E.

23. A mathematical reader would here expect in
some particulars more regular demonstrations; but as I do
not at present address my self to such, so I hope, what I have
now written will render my meaning evident enough to those,
who are unacquainted with that kind of reasoning.

24. Now as we have been shewing, that some actual
force is necessary either to put bodies out of a state of rest into
motion, or to change the motion, which they have once
received; it is proper here to observe, that this quality in bodies,
whereby they preserve their present state, with regard
to motion or rest, till some active force disturb them, is called
the vis inertiae of matter: and by this property, matter,
sluggish and unactive of it self, retains all the power impressed
upon it, and cannot be made to cease from action, but
by the opposition of as great a power, as that which first moved
it. By the degree of this vis inertiae, or power of inactivity,
as we shall henceforth call it, we primarily judge of
the quantity of solid matter in each body; for as this quality is
inherent in all the bodies, upon which we can make any trial,
we conclude it to be a property essential to all matter; and
as we yet know no reason to suppose, that bodies are composed
of different kinds of matter, we rather presume, that
the matter of all bodies is the same; and that the degree of
this power of inactivity is in every body proportional to the
quantity of the solid matter in it. But although we have no
absolute proof, that all the matter in the universe is uniform,
and possesses this power of inactivity in the same degree; yet
we can with certainty compare together the different degrees
of this power of inactivity in different bodies. Particularly
this power is proportional to the weight of bodies, as Sir Isaac
Newton has demonstrated[44]. However, notwithstanding
that this power of inactivity in any body can be more certainly
known, than the quantity of solid matter in it; yet since
there is no reason to suspect that one is not proportional to the
other, we shall hereafter speak without hesitation of the quantity
of matter in bodies, as the measure of the degree of their
power of inactivity.

25. This being established, we may now compare the
effects of the same power upon different bodies, as hitherto
we have shewn the effects of different powers upon the
same body. And here if we limit the word motion to the
peculiar sense given to it in philosophy, we may comprehend
all that is to be said upon this head under one short precept;
that the same power, to whatever body it is applied, will always
produce the same degree of motion. But here motion
does not signify the degree of celerity or velocity with which
a body moves, in which sense only we have hitherto used it;
but it is made use of particularly in philosophy to signify the
force with which a body moves: as if two bodies A and B being
in motion, twice the force would be required to stop A as
to stop B, the motion of A would be esteemed double the
motion of B. In moving bodies, these two things are carefully
to be distinguished; their velocity or celerity, which is
measured by the space they pass through during any determinate
portion of time; and the quantity of their motion, or
the force, with which they will press against any resistance.
Which force, when different bodies move with the same velocity,
is proportional to the quantity of solid matter in the
bodies; but if the bodies are equal, this force is proportional
to their respective velocities, and in other cases it is proportional
both to the quantity of solid matter in the body, and
also to its velocity. To instance in two bodies A and B: if A be
twice as great as B, and they have both the same velocity, the
motion of A shall be double the motion of B; and if the bodies
be equal, and the velocity of A be twice that of B, the
motion of A shall likewise be double that of B; but if A be
twice as large as B, and move twice as swift, the motion of A
will be four times the motion of B; and lastly, if A be twice
as large as B, and move but half as fast, the degree of their
motion shall be the same.

26. This is the particular sense given to the word motion
by philosophers, and in this sense of the word the same power
always produces the same quantity or degree of motion. If
the same power act upon two bodies A and B, the velocities,
it shall give to each of them, shall be so adjusted to the respective
bodies, that the same degree of motion shall be produced
in each. If A be twice as great as B, its velocity shall be half
that of B; if A has three times as much solid matter as B, the
velocity of A shall be one third of the velocity of B; and generally
the velocity given to A shall bear the same proportion
to the velocity given to B, as the quantity of solid matter contained
in the body B bears to the quantity of solid matter contained
in A.

27. The reason of all this is evident from what has gone
before. If a power were applied to B, which should bear
the same proportion to the power applied to A, as the body B
bears to A, the bodies B and A would both receive the same
velocity; and the velocity, which B will receive from this
power, will bear the same proportion to the velocity, which
it would receive from the action of the power applied to A,
as the former of these powers bears to the latter: that is,
the velocity, which A receives from the power applied to it,
will bear to the velocity, which B would receive from
the same power, the same proportion as the body B bears
to A.

28. From hence we may now pass to the third law of
motion, where this distinction between the velocity of a body
and its whole motion is farther necessary to be regarded, as
shall immediately be shewn; after having first illustrated the
meaning of this law by a familiar instance. If a stone or other
load be drawn by a horse; the load re-acts upon the horse,
as much as the horse acts upon the load; for the harness,
which is strained between them, presses against the horse as
much as against the load; and the progressive motion of the
horse forward is hindred as much by the load, as the motion
of the load is promoted by the endeavour of the horse: that
is, if the horse put forth the same strength, when loosened
from the load, he would move himself forwards with greater
swiftness in proportion to the difference between the weight
of his own body and the weight of himself and load together.

29. This instance will afford some general notion of the
meaning of this law. But to proceed to a more philosophical
explication: if a body in motion strike against another at
rest, let the body striking be ever so small, yet shall it communicate
some degree of motion to the body it strikes against,
though the less that body be in comparison of that it impinges
upon, and the less the velocity is, with which it moves,
the smaller will be the motion communicated. But whatever
degree of motion it gives to the resting body, the same it
shall lose it self. This is the necessary consequence of the
forementioned power of inactivity in matter. For suppose
the two bodies equal, it is evident from the time they meet,
both the bodies are to be moved by the single motion of the
first; therefore the body in motion by means of its power of
inactivity retaining the motion first given it, strikes upon the
other with the same force, wherewith it was acted upon it
self: but now both the bodies being to be moved by that
force, which before moved one only, the ensuing velocity
will be the same, as if the power, which was applied to one
of the bodies, and put it into motion, had been applied to
both; whence it appears, that they will proceed forwards,
with half the velocity, which the body first in motion had:
that is, the body first moved will have lost half its motion,
and the other will have gained exactly as much. This rule
is just, provided the bodies keep contiguous after meeting; as
they would always do, if it were not for a certain cause that
often intervenes, and which must now be explained. Bodies
upon striking against each other, suffer an alteration in their
figure, having their parts pressed inwards by the stroke, which
for the most part recoil again afterwards, the bodies endeavouring
to recover their former shape. This power, whereby
bodies are inabled to regain their first figure, is usually called
their elasticity, and when it acts, it forces the bodies from
each other, and causes them to separate. Now the effect of
this elasticity in the present case is such, that if the bodies are
perfectly elastic, so as to recoil with as great a force as they
are bent with, that they recover their figure in the same space
of time, as has been taken up in the alteration made in it by
their compression together; then this power will separate the
bodies as swiftly, as they before approached, and acting upon
both equally, upon the body first in motion contrary to
the direction in which it moves, and upon the other as much
in the direction of its motion, it will take from the first, and
add to the other equal degrees of velocity: so that the power
being strong enough to separate them with as great a velocity,
as they approached with, the first will be quite stopt, and
that which was at rest, will receive all the motion of the
other. If the bodies are elastic in a less degree, the first will
not lose all its motion, nor will the other acquire the motion
of the first, but fall as much short of it, as the other retains.
For this rule is never deviated from, that though the degree
of elasticity determines how much more than half its velocity
the body first in motion shall lose; yet in every case the
loss in the motion of this body shall be transferred to the other,
that other body always receiving by the stroke as much motion,
as is taken from the first.

30. This is the case of a body striking directly against an
equal body at rest, and the reasoning here used is fully confirmed
by experience. There are many other cases of bodies
impinging against one another: but the mention of these
shall be reserved to the next chapter, where we intend to be
more particular and diffusive in the proof of these laws of motion,
than we have been here.





Chap. II.

Farther proofs of the Laws of Motion.

HAVING in the preceding chapter deduced the three
laws of motion, delivered by our great philosopher,
from the most obvious observations, that suggest them to us;
I now intend to give more particular proofs of them, by recounting
some of the discoveries which have been made in
philosophy before Sir Isaac Newton. For as they were
all collected by reasoning upon those laws; so the conformity
of these discoveries to experience makes them so many proofs
of the truth of the principles, from which they were derived.



2. Let us begin with the subject, which concluded the
last chapter. Although the body in motion be not equal to
the body at rest, on which it strikes; yet the motion after
the stroke is to be estimated in the same manner as above.
Let A (in fig. 3.) be a body in motion towards another body
B lying at rest. When A is arrived at B, it cannot proceed
farther without putting B into motion; and what motion it
gives to B, it must lose it self, that the whole degree of motion
of A and B together, if neither of the bodies be elastic,
shall be equal, after the meeting of the bodies, to the single
motion of A before the stroke. Therefore, from what has
been said above, it is manifest, that as soon as the two bodies
are met, they will move on together with a velocity, which
will bear the same proportion to the original velocity of A, as
the body A bears to the sum of both the bodies.

3. If the bodies are elastic, so that they shall separate after
the stroke, A must lose a greater part of its motion, and
the subsequent motion of B will be augmented by this elasticity,
as much as the motion of A is diminished by it. The
elasticity acting equally between both the bodies, it will communicate
to each the same degree of motion; that is, it will
separate the bodies by taking from the body A and adding to
the body B different degrees of velocity, so proportioned to
their respective quantities of matter, that the degree of motion,
wherewith A separates from B, shall be equal to the degree
of motion, wherewith B separates from A. It follows
therefore, that the velocity taken from A by the elasticity
bears to the velocity, which the same elasticity adds to B, the
same proportion, as B bears to A: consequently the velocity,
which the elasticity takes from A, will bear the same proportion
to the whole velocity, wherewith this elasticity causes the
two bodies to separate from each other, as the body B bears to
the sum of the two bodies A and B; and the velocity, which
is added to B by the elasticity, bears to the velocity, wherewith
the bodies separate, the same proportion, as the body A
bears to the sum of the two bodies A and B. Thus is found,
how much the elasticity takes from the velocity of A, and
adds to the velocity of B; provided the degree of elasticity be
known, whereby to determine the whole velocity wherewith
the bodies separate from each other after the stroke[45].

4. After this manner is determined in every case the result
of a body in motion striking against another at rest. The
same principles will also determine the effects, when both
bodies are in motion.

5. Let two equal bodies move against each other with equal
swiftness. Then the force, with which each of them
presses forwards, being equal when they strike; each pressing
in its own direction with the same energy, neither shall
surmount the other, but both be stopt, if they be not elastic:
for if they be elastic, they shall from thence recover new motion,
and recede from each other, as swiftly as they met, if
they be perfectly elastic; but more slowly, if less so. In the
same manner, if two bodies of unequal bigness strike against
each other, and their velocities be so related, that the velocity
of the lesser body shall exceed the velocity of the greater in
the same proportion, as the greater body exceeds the lesser (for
instance, if one body contains twice the solid matter as the other,
and moves but half as fast) two such bodies will entirely
suppress each other’s motion, and remain from the time of
their meeting fixed; if, as before, they are not elastic: but,
if they are so in the highest degree, they shall recede again,
each with the same velocity, wherewith they met. For this
elastic power, as in the preceding case, shall renew their motion,
and pressing equally upon both, shall give the same motion
to both; that is, shall cause the velocity, which the lesser
body receives, to bear the same proportion to the velocity,
which the greater receives, as the greater body bears to the
lesser: so that the velocities shall bear the same proportion to
each other after the stroke, as before. Therefore if the bodies,
by being perfectly elastic, have the sum of their velocities
after the stroke equal to the sum of their velocities before the
stroke, each body after the stroke will receive its first velocity.
And the same proportion will hold likewise between the
velocities, wherewith they go off, though they are elastic but
in a less degree; only then the velocity of each will be less in
proportion to the defect of elasticity.

6. If the velocities, wherewith the bodies meet, are not
in the proportion here supposed; but if one of the bodies, as
A, has a swifter velocity in comparison to the velocity of the
other; then the effect of this excess of velocity in the body A
must be joined to the effect now mentioned, after the manner
of this following example. Let A be twice as great as B, and
move with the same swiftness as B. Here A moves with twice
that degree of swiftness, which would answer to the forementioned
proportion. For A being double to B, if it moved
but with half the swiftness, wherewith B advances, it has been
just now shewn, that the two bodies upon meeting would
stop, if they were not elastic; and if they were elastic, that
they would each recoil, so as to cause A to return with half
the velocity, wherewith B would return. But it is evident
from hence, that B by encountring A will annul half its velocity,
if the bodies be not elastic; and the future motion of the
bodies will be the same, as if A had advanced against B at
rest with half the velocity here assigned to it. If the bodies
be elastic, the velocity of A and B after the stroke may be thus
discovered. As the two bodies advance against each other,
the velocity, with which they meet, is made up of the velocities
of both bodies added together. After the stroke their
elasticity will separate them again. The degree of elasticity
will determine what proportion the velocity, wherewith they
separate, must bear to that, wherewith they meet. Divide
this velocity, with which the bodies separate into two parts,
that one of the parts bear to the other the same proportion, as
the body A bears to B; and ascribe the lesser part to the greater
body A, and the greater part of the velocity to the lesser
body B. Then take the part ascribed to A from the common
velocity, which A and B would have had after the stroke, if
they had not been elastic; and add the part ascribed to B to
the same common velocity. By this means the true velocities
of A and B after the stroke will be made known.



7. If the bodies are perfectly elastic, the great Huygens
has laid down this rule for finding their motion after concourse[46].
Any straight line C D (in fig. 4, 5.) being drawn,
let it be divided in E, that C E bear the same proportion to
E D, as the swiftness of A bore to the swiftness of B before the
stroke. Let the same line C D be also divided in F, that C F
bear the same proportion to F D, as the body B bears to the
body A. Then F G being taken equal to F E, if the point G
falls within the line C D, both the bodies shall recoil after the
stroke, and the velocity, wherewith the body A shall return,
will bear the same proportion to the velocity, wherewith B
shall return, as G C bears to G D; but if the point G falls without
the line C D, then the bodies after their concourse shall
both proceed to move the same way, and the velocity of A
shall bear to the velocity of B the same proportion, that G C
bears to G D, as before.

8. If the body B had stood still, and received the impulse
of the other body A upon it; the effect has been already explained
in the case, when the bodies are not elastic. And
when they are elastic, the result of their collision is found by
combining the effect of the elasticity with the other effect, in
the same manner as in the last case.

9. When the bodies are perfectly elastic, the rule of
Huygens[47] here is to divide the line C D (fig. 6.) in E as
before, and to take E G equal to E D. And by these points
thus found, the motion of each body after the stroke is determined,
as before.

10. In the next place, suppose the bodies A and B were
both moving the same way, but A with a swifter motion, so
as to overtake B, and strike against it. The effect of the percussion
or stroke, when the bodies are not elastic, is discovered
by finding the common motion, which the two bodies
would have after the stroke, if B were at rest, and A were to
advance against it with a velocity equal to the excess of the
present velocity of A above the velocity of B; and by adding
to this common velocity thus found the velocity of B.

11. If the bodies are elastic, the effect of the elasticity is
to be united with this other, as in the former cases.

12. When the bodies are perfectly elastic, the rule of
Huygens[48] in this case is to prolong C D (fig. 7.) and to
take in it thus prolonged C E in the same proportion to E D,
as the greater velocity of A bears to the lesser velocity of B;
after which F G being taken equal to F E, the velocities of the
two bodies after the stroke will be determined, as in the two
preceding cases.

13. Thus I have given the sum of what has been written
concerning the effects of percussion, when two bodies
freely in motion strike directly against each other; and the
results here set down, as the consequence of our reasoning
from the laws of motion, answer most exactly to experience.
A particular set of experiments has been invented to make
trial of these effects of percussion with the greatest exactness.
But I must defer these experiments, till I have explained the
nature of pendulums[49]. I shall therefore now proceed to describe
some of the appearances, which are caused in bodies
from the influence of the power of gravity united with the
general laws of motion; among which the motion of the
pendulum will be included.

14. The most simple of these appearances is, when bodies
fall down merely by their weight. In this case the body
increases continually its velocity, during the whole time of its
fall, and that in the very same proportion as the time increases.
For the power of gravity acts constantly on the body with
the same degree of strength: and it has been observed above
in the first law of motion, that a body being once in motion
will perpetually preserve that motion without the continuance
of any external influence upon it: therefore, after a body has
been once put in motion by the force of gravity, the body
would continue that motion, though the power of gravity
should cease to act any farther upon it; but, if the power of
gravity continues still to draw the body down, fresh degrees
of motion must continually be added to the body; and the
power of gravity acting at all times with the same strength,
equal degrees of motion will constantly be added in equal
portions of time.



15. This conclusion is not indeed absolutely true: for we
shall find hereafter[50], that the power of gravity is not of the
same strength at all distances from the center of the earth. But
nothing of this is in the least sensible in any distance, to which
we can convey bodies. The weight of bodies is the very same
to sense upon the highest towers or mountains, as upon the
level ground; so that in all the observations we can make,
the forementioned proportion between the velocity of a falling
body and the time, in which it has been descending, obtains
without any the least perceptible difference.

16. From hence it follows, that the space, through which
a body falls, is not proportional to the time of the fall; for
since the body increases its velocity, a greater space will be
passed over in the same portion of time at the latter part of the
fall, than at the beginning. Suppose a body let fall from the
point A (in fig. 8.) were to descend from A to B in any portion
of time; then if in an equal portion of time it were to
proceed from B to C; I say, the space B C is greater than A B;
so that the time of the fall from A to C being double the time
of the fall from A to B, A C shall be more than double of A B.

17. The geometers have proved, that the spaces, through
which bodies fall thus by their weight, are just in a duplicate
or two-fold proportion of the times, in which the body has
been falling. That is, if we were to take the line D E in the
same proportion to A B, as the time, which the body has imployed
in falling from A to C, bears to the time of the fall
from A to B; then A C will be to D E in the same proportion.
In particular, if the time of the fall through A C be twice the
time of the fall through A B; then D E will be twice A B, and
A C twice D E; or A C four times A B. But if the time of the
fall through A C had been thrice the time of the fall through
A B; D E would have been treble of A B, and A C treble of
D E; that is, A C would have been equal to nine times A B.

18. If a body fall obliquely, it will approach the ground
by slower degrees, than when it falls perpendicularly. Suppose
two lines A B, A C (in fig. 9.) were drawn, one perpendicular,
and the other oblique to the ground D E: then if a
body were to descend in the slanting line A C; because the
power of gravity draws the body directly downwards, if the
line A C supports the body from falling in that manner, it
must take off part of the effect of the power of gravity; so
that in the time, which would have been sufficient for the
body to have fallen through the whole perpendicular line A B,
the body shall not have passed in the line A C a length equal
to A B; consequently the line A C being longer than A B,
the body shall most certainly take up more time in passing
through A C, than it would have done in falling perpendicularly
down through A B.

19. The geometers demonstrate, that the time, in which
the body will descend through the oblique straight line A C,
bears the same proportion to the time of its descent through
the perpendicular A B, as the line it self A C bears to A B.
And in respect to the velocity, which the body will have acquired
in the point C, they likewise prove, that the length of
the time imployed in the descent through A C so compensates
the diminution of the influence of gravity from the obliquity
of this line, that though the force of the power of gravity on
the body is opposed by the obliquity of the line A C, yet the
time of the body’s descent shall be so much prolonged, that
the body shall acquire the very same velocity in the point C,
as it would have got at the point B by falling perpendicularly
down.

20. If a body were to descend in a crooked line, the time
of its descent cannot be determined in so simple a manner;
but the same property, in relation to the velocity, is demonstrated
to take place in all cases: that is, in whatever line the
body descends, the velocity will always be answerable to the
perpendicular height, from which the body has fell. For instance,
suppose the body A (in fig. 10.) were hung by a
string to the pin B. If this body were let fall, till it came to
the point C perpendicularly under B, it will have moved from
A to C in the arch of a circle. Then the horizontal line A D
being drawn, the velocity of the body in C will be the same,
as if it had fallen from the point D directly down to C.

21. If a body be thrown perpendicularly upward with any
force, the velocity, wherewith the body ascends, shall
continually diminish, till at length it be wholly taken away;
and from that time the body will begin to fall down again,
and pass over a second time in its descent the line, wherein it
ascended; falling through this line with an increasing velocity
in such a manner, that in every point thereof, through
which it falls, it shall have the very same velocity, as it had in
the same place, when it ascended; and consequently shall come
down into the place, whence it first ascended, with the velocity
which was at first given to it. Thus if a body were thrown
perpendicularly up in the line A B (in fig. II.) with such a
force, as that it should stop at the point B, and there begin
to fall again; when it shall have arrived in its descent to any
point as C in this line, it shall there have the same velocity,
as that wherewith it passed by this point C in its ascent; and
at the point A it shall have gained as great a velocity, as
that wherewith it was first thrown upwards. As this is demonstrated
by the geometrical writers; so, I think, it will
appear evident, by considering only, that while the body descends,
the power of gravity must act over again, in an inverted
order, all the influence it had on the body in its ascent;
so as to give again to the body the same degrees of velocity,
which it had taken away before.

22. After the same manner, if the body were thrown
upwards in the oblique straight line C A (in fig. 9.) from the
point C, with such a degree of velocity as just to reach the
point A; it shall by its own weight return again through the
line A C by the same degrees, as it ascended.

23. And lastly, if a body were thrown with any velocity
in a line continually incurvated upwards, the like effect will
be produced upon its return to the point, whence it was
thrown. Suppose for instance, the body A (in fig. 12.) were
hung by a string A B. Then if this body be impelled any
way, it must move in the arch of a circle. Let it receive such
an impulse, as shall cause it to move in the arch A C; and let
this impulse be of such strength, that the body may be carried
from A as far as D, before its motion is overcome by its
weight: I say here, that the body forthwith returning from
D, shall come again into the point A with the same velocity,
as that wherewith it began to move.

24. It will be proper in this place to observe concerning
the power of gravity, that its force upon any body does not
at all depend upon the shape of the body; but that it continues
constantly the same without any variation in the same
body, whatever change be made in the figure of the body: and
if the body be divided into any number of pieces, all those
pieces shall weigh just the same, as they did, when united
together in one body: and if the body be of a uniform contexture,
the weight of each piece will be proportional to its
bulk. This has given reason to conclude, that the power of
gravity acts upon bodies in proportion to the quantity of matter
in them. Whence it should follow, that all bodies must
fall from equal heights in the same space of time. And as
we evidently see the contrary in feathers and such like substances,
which fall very slowly in comparison of more solid
bodies; it is reasonable to suppose, that some other cause concurs
to make so manifest a difference. This cause has been
found by particular experiments to be the air. The experiments
for this purpose are made thus. They set up a very
tall hollow glass; within which near the top they lodge a feather
and some very ponderous body, usually a piece of gold,
this metal being the most weighty of any body known to us.
This glass they empty of the air contained within it, and by
moving a wire, which passes through the top of the glass, they
let the feather and the heavy body fall together; and it is always
found, that as the two bodies begin to descend at the
same time, so they accompany each other in the fall, and
come to the bottom at the very same instant, as near as the eye
can judge. Thus, as far as this experiment can be depended
on, it is certain, that the effect of the power of gravity upon
each body is proportional to the quantity of solid matter, or to
the power of inactivity in each body. For in the limited
sense, which we have given above to the word motion, it has
been shown, that the same force gives to all bodies the same
degree of motion, and different forces communicate different
degrees of motion proportional to the respective powers[51]. In
this case, if the power of gravity were to act equally upon the
feather, and upon the more solid body, the solid body would
descend so much slower than the feather, as to have no greater
degree of motion than the feather: but as both bodies descend
with equal swiftness, the degree of motion in the solid
body is greater than in the feather, bearing the same proportion
to it, as the quantity of matter in the solid body to the
quantity of matter in the feather. Therefore the effect of
gravity on the solid body is greater than on the feather, in proportion
to the greater degree of motion communicated; that
is, the effect of the power of gravity on the solid body bears
the same proportion to its effect on the feather, as the quantity
of matter in the solid body bears to the quantity of matter
in the feather. Thus it is the proper deduction from this experiment,
that the power of gravity acts not on the surface of bodies
only, but penetrates the bodies themselves most intimately,
and operates alike on every particle of matter in them. But
as the great quickness, with which the bodies fall, leaves it
something uncertain, whether they do descend absolutely in
the same time, or only so nearly together, that the difference
in their swift motion is not discernable to the eye; this property
of the power of gravity, which has here been deduced
from this experiment, is farther confirmed by pendulums,
whose motion is such, that a very minute difference would
become sufficiently sensible. This will be farther discoursed
on in another place[52]; but here I shall make use of the principle
now laid down to explain the nature of what is called
the center of gravity in bodies.

25. The center of gravity is that point, by which if a
body be suspended, it shall hang at rest in any situation. In
a globe of a uniform texture the center of gravity is the same
with the center of the globe; for as the parts of the globe on
every side of its center are similarly disposed, and the power
of gravity acts alike on every part; it is evident, that the parts
of the globe on each side of the center are drawn with equal
force, and therefore neither side can yield to the other; but
the globe, if supported at its center, must of necessity hang
at rest. In like manner, if two equal bodies A and B (in
fig. 13.) be hung at the extremities of an inflexible rod C D,
which should have no weight; these bodies, if the rod be
supported at its middle E, shall equiponderate; and the rod
remain without motion. For the bodies being equal and at
the same distance from the point of support E, the power of
gravity will act upon each with equal strength, and in all respects
under the same circumstances; therefore the weight of
one cannot overcome the weight of the other. The weight
of A can no more surmount the weight of B, than the weight
of B can surmount the weight of A. Again, suppose a body
as A B (in fig. 14.) of a uniform texture in the form of a
roller, or as it is more usually called a cylinder, lying horizontally.
If a straight line be drawn between C and D, the
centers of the extreme circles of this cylinder; and if this
straight line, commonly called the axis of the cylinder, be
divided into two equal parts in E: this point E will be the
center of gravity of the cylinder. The cylinder being a uniform
figure, the parts on each side of the point E are equal, and
situated in a perfectly similar manner; therefore this cylinder,
if supported at the point E, must hang at rest, for the
same reason as the inflexible rod above-mentioned will remain
without motion, when suspended at its middle point. And
it is evident, that the force applied to the point E, which
would uphold the cylinder, must be equal to the cylinder’s
weight. Now suppose two cylinders of equal thickness A B
and C D to be joined together at C B, so that the two axis’s
E F, and F G lie in one straight line. Let the axis E F be divided
into two equal parts at H, and the axis F G into two
equal parts at I. Then because the cylinder A B would be
upheld at rest by a power applied in H equal to the weight of
this cylinder, and the cylinder C D would likewise be upheld
by a power applied in I equal to the weight of this cylinder;
the whole cylinder A D will be supported by these two powers:
but the whole cylinder may likewise be supported by a power
applied to K, the middle point of the whole axis E G, provided
that power be equal to the weight of the whole cylinder. It
is evident therefore, that this power applied in K will produce
the same effect, as the two other powers applied in H and I. It
is farther to be observed, that H K is equal to half F G, and
K I equal to half E F; for E K being equal to half E G, and E H
equal to half E F, the remainder H K must be equal to half
the remainder F G; so likewise G K being equal to half G E,
and G I equal to half G F, the remainder I K must be equal to
half the remainder E F. It follows therefore, that H K bears
the same proportion to K I, as F G bears to E F. Besides, I
believe, my readers will perceive, and it is demonstrated in
form by the geometers, that the whole body of the cylinder
C D bears the same proportion to the whole body of the cylinder
A B, as the axis F G bears to the axis E F[53]. But hence
it follows, that in the two powers applied at H and I, the
power applied at H bears the same proportion to the power
applied at I, as K I bears to K H. Now suppose two strings
H L and I M extended upwards, one from the point H and the
other from I, and to be laid hold on by two powers, one
strong enough to hold up the cylinder A B, and the other of
strength sufficient to support the cylinder C D. Here as these
two powers uphold the whole cylinder, and therefore produce
an effect, equal to what would have been produced by
a power applied to the point K of sufficient force to sustain the
whole cylinder: it is manifest, that if the cylinder be taken
away, the axis only being left, and from the point K a string,
as K N, be extended, which shall be drawn down by a power
equivalent to the weight of the cylinder, this power shall act
against the other two powers, as much as the cylinder acted
against them; and consequently these three powers shall be
upon a balance, and hold the axis H I fixed between them.
But if these three powers preserve a mutual balance, the
two powers applied to the strings H L and I M are a balance
to each other; the power applied to the string H L bearing
the same proportion to the power applied to the string I M,
as the distance I K bears to the distance K H.  Hence it farther
appears, that if an inflexible rod A B (in fig. 15.) be
suspended by any point C not in the middle thereof; and if
at A the end of the shorter arm be hung a weight, and at B
the end of the longer arm be also hung a weight less than
the other, and that the greater of these weights bears to the
lesser the same proportion, as the longer arm of the rod bears
to the shorter; then these two weights will equiponderate:
for a power applied at C equal to both these weights will support
without motion the rod thus charged; since here nothing
is changed from the preceding case but the situation
of the powers, which are now placed on the contrary
sides of the line, to which they are fixed. Also for the
same reason, if two weights A and B (in fig. 16.) were connected
together by an inflexible rod C D, drawn from C the
center of gravity of A to D the center of gravity of B; and
if the rod C D were to be so divided in E, that the part D E
bear the same proportion to the other part C E, as the weight
A bears to the weight B: then this rod being supported at E
will uphold the weights, and keep them at rest without motion.
This point E, by which the two bodies A and B will be
supported, is called their common center of gravity. And if
a greater number of bodies were joined together, the point, by
which they could all be supported, is called the common center
of gravity of them all. Suppose (in fig. 17.) there were three
bodies A, B, C, whose respective centers of gravity were joined
by the three lines D E, D F, E F: the line D E being so divided
in G, that D G bear the same proportion to G E, as B bears to
A; G is the center of gravity common to the two bodies A
and B; that is, a power equal to the weight of both the bodies
applied to G would support them, and the point G is
pressed as much by the two weights A and B, as it would be,
if they were both hung together at that point. Therefore,
if a line be drawn from G to F, and divided in H, so that G H
bear the same proportion to H F, as the weight C bears to
both the weights A and B, the point H will be the common
center of gravity of all the three weights; for H would be
their common center of gravity, if both the weights A and B
were hung together at G, and the point G is pressed as much
by them in their present situation, as it would be in that case.
In the same manner from the common center of these three
weights, you might proceed to find the common center, if a
fourth weight were added, and by a gradual progress might
find the common center of gravity belonging to any number
of weights whatever.

26. As all this is the obvious consequence of the proposition
laid down for assigning the common center of gravity of
any two weights, by the same proposition the center of gravity
of all figures is found. In a triangle, as A B C (in
fig. 18.) the center of gravity lies in the line drawn from the
middle point of any one of the sides to the opposite angle,
as the line B D is drawn from D the middle of the line A C to
the opposite angle B[54]; so that if from the middle of either
of the other sides, as from the point E in the side A B, a line
be drawn, as E C, to the opposite angle; the point F, where
this line crosses the other line B D, will be the center of gravity
of the triangle[55]. Likewise D F is equal to half F B, and
E F equal to half F C[56]. In a hemisphere, as A B C (fig. 19.)
if from D the center of the base the line D B be erected perpendicular
to that base, and this line be so divided in E, that
D E be equal to three fifths of B E, the point E is the center of
gravity of the hemisphere[57].

27. It will be of use to observe concerning the center of
gravity of bodies; that since a power applied to this center
alone can support a body against the power of gravity, and
hold it fixed at rest; the effect of the power of gravity on a
body is the same, as if that whole power were to exert itself
on the center of gravity only. Whence it follows, that, when
the power of gravity acts on a body suspended by any point,
if the body is so suspended, that the center of gravity of the
body can descend; the power of gravity will give motion to
that body, otherwise not: or if a number of bodies are so
connected together, that, when any one is put into motion,
the rest shall, by the manner of their being joined, receive
such motion, as shall keep their common center of gravity at
rest; then the power of gravity shall not be able to produce
any motion in these bodies, but in all other cases it will.
Thus, if the body A B (in fig. 20, 21.) whose center of gravity
is C, be hung on the point A, and the center C be perpendicularly
under A (as in fig. 20.) the weight of the body
will hold it still without motion, because the center C
cannot descend any lower. But if the body be removed into
any other situation, where the center C is not perpendicularly
under A (as in fig. 21.) the body by its weight will
be put into motion towards the perpendicular situation of its
center of gravity. Also if two bodies A, B (in fig. 22.) be
joined together by the rod C D lying in an horizontal situation,
and be supported at the point E; if this point be the
center of gravity common to the two bodies, their weight
will not put them into motion; but if this point E is not their
common center of gravity, the bodies will move; that part
of the rod C D descending, in which the common center of
gravity is found. So in like manner, if these two bodies were
connected together by any more complex contrivance; yet
if one of the bodies cannot move without so moving the
other, that their common center of gravity shall rest, the
weight of the bodies will not put them in motion, otherwise
it will.

28. I shall proceed in the next place to speak of the mechanical
powers. These are certain instruments or machines,
contrived for the moving great weights with small force; and
their effects are all deducible from the observation we have
just been making. They are usually reckoned in number
five; the lever, the wheel and axis, the pulley, the wedge,
and the screw; to which some add the inclined plane. As
these instruments have been of very ancient use, so the celebrated
Archimedes seems to have been the first, who discovered
the true reason of their effects. This, I think, may be
collected from what is related of him, that some expressions,
which he used to denote the unlimited force of these instruments,
were received as very extraordinary paradoxes:
whereas to those, who had understood the cause of their
great force, no expressions of that kind could have appeared
surprizing.

29. All the effects of these powers may be judged of by
this one rule, that, when two weights are applied to any of
these instruments, the weights will equiponderate, if, when
put into motion, their velocities will be reciprocally proportional
to their respective weights. And what is said of weights,
must of necessity be equally understood of any other forces
equivalent to weights, such as the force of a man’s arm, a
stream of water, or the like.

30. But to comprehend the meaning of this rule, the
reader must know, what is to be understood by reciprocal
proportion; which I shall now endeavour to explain, as distinctly
as I can; for I shall be obliged very frequently to
make use of this term. When any two things are so related,
that one increases in the same proportion as the other, they are
directly proportional. So if any number of men can perform
in a determined space of time a certain quantity of any work,
suppose drain a fish-pond, or the like; and twice the number
of men can perform twice the quantity of the same work,
in the same time; and three times the number of men can
perform as soon thrice the work; here the number of men
and the quantity of the work are directly proportional. On
the other hand, when two things are so related, that one decreases
in the same proportion, as the other increases, they
are said to be reciprocally proportional. Thus if twice the
number of men can perform the same work in half the time,
and three times the number of men can finish the same in a
third part of the time; then the number of men and the
time are reciprocally proportional. We shewed above[58] how
to find the common center of gravity of two bodies, there
the distances of that common center from the centers of gravity
of the two bodies are reciprocally proportional to the respective
bodies.  For C E in fig. 16. being in the same proportion
to E D, as B bears to A; C E is so much greater in
proportion than E D, as A is less in proportion than B.

31. Now this being understood, the reason of the rule
here stated will easily appear. For if these two bodies were
put in motion, while the point E rested, the velocity, wherewith
A would move, would bear the same proportion to the
velocity, wherewith B would move, as E C bears to E D. The
velocity therefore of each body, when the common center
of gravity rests, is reciprocally proportional to the body. But
we have shewn above[59], that if two bodies are so connected together,
that the putting them in motion will not move their
common center of gravity; the weight of those bodies will
not produce in them any motion. Therefore in any of these
mechanical engines, if, when the bodies are put into motion,
their velocities are reciprocally proportional to their respective
weights, whereby the common center of gravity would remain
at rest; the bodies will not receive any motion from their
weight, that is, they will equiponderate. But this perhaps
will be yet more clearly conceived by the particular description
of each mechanical power.

32. The lever was first named above. This is a bar made
use of to sustain and move great weights. The bar is applied
in one part to some strong support; as the bar A B (in
fig. 23, 24.) is applied at the point C to the support D. In
some other part of the bar, as E, is applied the weight to be
sustained or moved; and in a third place, as F, is applied another
weight or equivalent force, which is to sustain or move
the weight at E. Now here, if, when the level should be
put in motion, and turned upon the point C, the velocity,
wherewith the point F would move, bears the same proportion
to the velocity, wherewith the point E would move, as
the weight at E bears to the weight or force at F; then the
lever thus charged will have no propensity to move either
way. If the weight or other force at F be not so great as to
bear this proportion, the weight at E will not be sustained;
but if the force at F be greater than this, the weight at E will
be surmounted. This is evident from what has been said
above[60], when the forces at E and F are placed (as in fig. 23.)
on different sides of the support D. It will appear also equally
manifest in the other case, by continuing the bar B C in
fig. 24. on the other side of the support D, till C G be equal
to C F, and by hanging at G a weight equivalent to the power
at F; for then, if the power at F were removed, the two
weights at G and E would counterpoize each other, as in
the former case: and it is evident, that the point F will
be lifted up by the weight at G with the same degree of
force, as by the other power applied to F; since, if the
weight at E were removed, a weight hung at F equal to
that at G would balance the lever, the distances C G and
C F being equal.

33. If the two weights, or other powers, applied to the
lever do not counterbalance each other; a third power may
be applied in any place proposed of the lever, which shall
hold the whole in a just counterpoize. Suppose (in fig. 25.)
the two powers at E and F did not equiponderate, and it were
required to apply a third power to the point G, that might be
sufficient to balance the lever. Find what power in F would
just counterbalance the power in E; then if the difference
between this power and that, which is actually applied at F,
bear the same proportion to the third power to be applied at
G, as the distance C G bears to C F; the lever will be counterpoized
by the help of this third power, if it be so applied
as to act the same way with the power in F, when that power
is too small to counterbalance the power in E; but otherwise
the power in G must be so applied, as to act against the
power in F. In like manner, if a lever were charged with three,
or any greater number of weights or other powers, which did
not counterpoize each other, another power might be applied
in any place proposed, which should bring the whole to a
just balance. And what is here said concerning a plurality of
powers, may be equally applied to all the following cases.

34. If the lever should consist of two arms making an
angle at the point C (as in fig. 26.) yet if the forces are applied
perpendicularly to each arm, the same proportion will
hold between the forces applied, and the distances of the center,
whereon the lever rests, from the points to which they
are applied. That is, the weight at E will be to the force in
F in the same proportion, as C F bears to C E.

35. But whenever the forces applied to the lever act obliquely
to the arm, to which they are applied (as in fig. 27.)
then the strength of the forces is to be estimated by lines let
fall from the center of the lever to the directions, wherein the
forces act. To balance the levers in fig. 27, the weight or
other force at F will bear the same proportion to the weight
at E, as the distance C E bears to C G the perpendicular let fall
from the point C upon the line, which denotes the direction
wherein the force applied to F acts: for here, if the lever be
put into motion, the power applied to F will begin to move in
the direction of the line F G; and therefore its first motion will
be the same, as the motion of the point G.

36. When two weights hang upon a lever, and the point,
by which the lever is supported, is placed in the middle between
the two weights, that the arms of the lever are both
of equal length; then this lever is particularly called a balance;
and equal weights equiponderate as in common scales.
When the point of support is not equally distant from both
weights, it constitutes that instrument for weighing, which
is called a steelyard. Though both in common scales, and the
steelyard, the point, on which the beam is hung, is not usually
placed just in the same straight line with the points, that
hold the weights, but rather a little above (as in fig. 28.)
where the lines drawn from the point C, whereon the beam
is suspended, to the points E and F, on which the weights are
hung, do not make absolutely one continued line. If the
three points E, C, and F were in one straight line, those weights,
which equiponderated, when the beam hung horizontally,
would also equiponderate in any other situation.
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But we see in these instruments, when they are charged with weights,
which equiponderate with the beam hanging horizontally;
that, if the beam be inclined either way, the weight most
elevated surmounts the other, and descends, causing the beam
to swing, till by degrees it recovers its horizontal position.
This effect arises from the forementioned structure: for by
this structure these instruments are levers composed of two
arms, which make an angle at the point of support (as in
fig. 29, 30.) the first of which represents the case of the
common balance, the second the case of the steelyard. In
the first, where C E and C F are equal, equal weights hung
at E and F will equiponderate, when the points E and F are
in an horizontal situation. Suppose the lines E G and F H to
be perpendicular to the horizon, then they will denote the directions,
wherein the forces applied to E and F act. Therefore
the proportion between the weights at E and F, which
shall equiponderate, are to be judged of by perpendiculars,
as C I, C K, let fall from C upon E G and F H: so that the
weights being equal, the lines C I, C K, must be equal also,
when the weights equiponderate. But I believe my readers
will easily see, that since C E and C F are equal, the lines
C I and C K will be equal, when the points E and F are horizontally
situated.

37. If this lever be set into any other position (as in
fig. 31.) then the weight, which is raised highest, will outweigh
the other. Here, if the point F be raised higher than
E, the perpendicular C K will be longer than C I: and therefore
the weights would equiponderate, if the weight at F
were less than the weight at E. But the weight at F is equal
to that at E; therefore is greater, than is necessary to counterbalance
the weight at E, and consequently will outweigh it,
and draw the beam of the lever down.

38. In like manner in the case of the steelyard (fig. 32.)
if the weights at E and F are so proportioned, as to equiponderate,
when the points E and F are horizontally situated;
then in any other situation of this lever the weight, which is
raised highest, will preponderate. That is, if in the horizontal
situation of the points E and F the weight at F bears
the same proportion to the weight at E, as C I bears to C K;
then, if the point F be raised higher than E (as in fig. 32.)
the weight at F shall bear a greater proportion to the weight
at E, than C I bears to C K.

39. Farther a lever may be hung upon an axis, and
then the two arms of the lever need not be continuous, but
fixed to different parts of this axis; as in fig. 33, where
the axis A B is supported by its two extremities A and B. To
this axis one arm of the lever is fixed at the point C, the other
at the point D. Now here, if a weight be hung at E, the
extremity of that arm, which is fixed to the axis at the point
C; and another weight be hung at F, the extremity of the
arm, which is fixed on the axis at D; then these weights
will equiponderate, when the weight at E bears the same
proportion to the weight at F, as the arm D F bears to
C E.



40. This is the case, if both the arms are perpendicular
to the axis, and lie (as the geometers express themselves)
in the same plane; or, in other words, if the arms are so fixed
perpendicularly upon the axis, that, when one of them
lies horizontally, the other shall also be horizontal.  If either
arm stand not perpendicular to the axis; then, in determining
the proportion between the weights, instead of the
length of that arm, you must use the perpendicular let fall
upon the axis from the extremity of that arm.  If the arms
are not so fixed as to become horizontal, at the same time;
the method of assigning the proportion between the weights
is analogous to that made use of above in levers, which make
an angle at the point, whereon they are supported.

41. From this case of the lever hung on an axis, it is easy
to make a transition to another mechanical power, the
wheel and axis.

42. This instrument is a wheel fixed on a roller, the
roller being supported at each extremity so as to turn
round freely with the wheel, in the manner represented in
fig. 34, where A B is the wheel, C D the roller, and E F its
two supports. Now suppose a weight G hung by a cord
wound round the roller, and another weight H hung by a
cord wound about the wheel the contrary way: that these
weights may support each other, the weight H must bear the
same proportion to the weight G, as the thickness of the roller
bears to the diameter of the wheel.



43. Suppose the line k l to be drawn through the middle
of the roller; and from the place of the roller, where
the cord, on which the weight G hangs, begins to leave the
roller, as at m, let the line m n be drawn perpendicularly to
k l; and from the point, where the cord holding the weight
H begins to leave the wheel, as at o, let the line o p be drawn
perpendicular to k l. This being done, the two lines o p
and m n represent two arms of a lever fixed on the axis k l;
consequently the weight H will bear to the weight G the same
proportion, as m n bears to o p. But m n bears the same proportion
to o p, as the thickness of the roller bears to the diameter
of the wheel; for m n is half the thickness of the roller,
and o p half the diameter of the wheel.

44. If the wheel be put into motion, and turned once
round, that the cord, on which the weight G hangs, be
wound once more round the axis; then at the same time the
cord, whereon the weight H hangs, will be wound off from
the wheel one circuit. Therefore the velocity of the weight
G will bear the same proportion to the velocity of the weight
H, as the circumference of the roller to the circumference of
the wheel. But the circumference of the roller bears the same
proportion to the circumference of the wheel, as the thickness
of the roller bears to the diameter of the wheel, consequently
the velocity of the weight G bears to the velocity
of the weight H the same proportion, as the thickness of
the roller bears to the diameter of the wheel, which is the
proportion that the weight H bears to the weight G. Therefore
as before in the lever, so here also the general rule laid
down above is verified, that the weights equiponderate, when
their velocities would be reciprocally proportional to their
respective weights.

45. In like manner, if on the same axis two wheels of different
sizes are fixed (as in fig. 35.) and a weight hung on
each; the weights will equiponderate, if the weight hung on
the greater wheel bear the same proportion to the weight hung
on the lesser, as the diameter of the lesser wheel bears to the
diameter of the greater.

46. It is usual to join many wheels together in the same
frame, which by the means of certain teeth, formed in the circumference
of each wheel, shall communicate motion to each
other. A machine of this nature is represented in fig. 36. Here
A B C is a winch, upon which is fixed a small wheel D indented
with teeth, which move in the like teeth of a larger wheel
E F fixed on the axis G H. Let this axis carry another wheel
I, which shall move in like manner a greater wheel K L fixed
on the axis M N. Let this axis carry another small wheel O,
which after the same manner shall turn about a larger wheel
P Q fixed on the roller R S, on which a cord shall be wound,
that holds a weight, as T. Now the proportion required between
the weight T and a power applied to the winch at A
sufficient to support the weight, will most easily be estimated,
by computing the proportion, which the velocity of the point
A would bear to the velocity of the weight. If the winch be
turned round, the point A will describe a circle as A V. Suppose
the wheel E F to have ten times the number of teeth, as
the wheel D; then the winch must turn round ten times to
carry the wheel E F once round. If wheel K L has also ten
times the number of teeth, as I, the wheel I must turn round
ten times to carry the wheel K L once round; and consequently
the winch A B C must turn round an hundred times
to turn the wheel K L once round. Lastly, if the wheel P Q
has ten times the number of teeth, as the wheel O, the winch
must turn about one thousand times in order to turn the wheel
P Q, or the roller R S once round. Therefore here the point
A must have gone over the circle A V a thousand times, in order
to lift the weight T through a space equal to the circumference
of the roller R S: whence it follows, that the power
applied at A will balance the weight T, if it bear the same
proportion to it, as the circumference of the roller to one
thousand times the circle A V; or the same proportion as half
the thickness of the roller bears to one thousand times A B.

47. I shall now explain the effect of the pulley. Let
a weight hang by a pulley, as in fig. 37. Here it is evident,
that the power A, by which the weight B is supported,
must be equal to the weight; for the cord C D is equally
strained between them; and if the weight B move, the power
A must move with equal velocity. The pulley E has no other
effect, than to permit the power A to act in another direction,
than it must have done, if it had been directly applied to support
the weight without the intervention of any such instrument.

48. Again, let a weight be supported, as in fig. 38;
where the weight A is fixed to the pulley B, and the cord, by
which the weight is upheld, is annexed by one extremity to a
hook C, and at the other end is held by the power D. Here
the weight is supported by a cord doubled; insomuch that
although the cord were not strong enough to hold the weight
single, yet being thus doubled it might support it. If the
end of the cord held by the power D were hung on the hook
C, as well as the other end; then, when both ends of the cord
were tied to the hook, it is evident, that the hook would
bear the whole weight; and each end of the string would
bear against the hook with the force of half the weight only,
seeing both ends together bear with the force of the whole.
Hence it is evident, that, when the power D holds one end of
the weight, the force, which it must exert to support the
weight, must be equal to just half the weight. And the same
proportion between the weight and power might be collected
from comparing the respective velocities, with which they
would move; for it is evident, that the power must move
through a space equal to twice the distance of the pulley from
the hook, in order to lift the pulley up to the hook.

49. It is equally easy to estimate the effect, when many
pulleys are combined together, as in fig. 39, 40; in the first
of which the under set of pulleys, and consequently the
weight is held by six strings; and in the latter figure by five:
therefore in the first of these figures the power to support the
weight, must be one sixth part only of the weight, and in
the latter figure the power must be one fifth part.



50. There are two other ways of supporting a weight
by pulleys, which I shall particularly consider.

51. One of these ways is represented in fig. 41. Here the
weight being connected to the pulley B, a power equal to
half the weight A would support the pulley C, if applied immediately
to it. Therefore the pulley C is drawn down
with a force equal to half the weight A. But if the pulley D
were to be immediately supported by half the force, with
which the pulley C is drawn down, this pulley D will uphold
the pulley C; so that if the pulley D be upheld with a force
equal to one fourth part of the weight A, that force will support
the weight. But, for the same reason as before, if the
power in E be equal to half the force necessary to uphold the
pulley D; this pulley, and consequently the weight A, will
be upheld: therefore, if the power in E be one eighth part
of the weight A, it will support the weight.

52. Another way of applying pulleys to a weight is
represented in fig. 42. To explain the effect of pulleys thus
applied, it will be proper to consider different weights hanging,
as in fig. 43. Here, if the power and weights balance each
other, the power A is equal to the weight B; the weight C is
equal to twice the power A, or the weight B; and for the same
reason the weight D is equal to twice the weight C, or equal
to four times the power A. It is evident therefore, that all
the three weights B, C, D together are equal to seven times the
power A. But if these three weights were joined in one, they
would produce the case of fig. 40: so that in that figure the
weight A, where there are three pulleys, is seven times the
power B. If there had been but two pulleys, the weight would
have been three times the power; and if there had been four
pulleys, the weight would have been fifteen times the power.

53. The wedge is next to be considered. The form of
this instrument is sufficiently known. When it is put under
any weight (as in fig. 44.) the force, with which the wedge
will lift the weight, when drove under it by a blow upon the
end A B, will bear the same proportion to the force, wherewith
the blow would act on the weight, if directly applied to
it; as the velocity, which the wedge receives from the blow,
bears to the velocity, wherewith the weight is lifted by the
wedge.

54. The screw is the fifth mechanical power. There are
two ways of applying this instrument. Sometimes it is screwed
into a hole, as in fig. 45, where the screw A B is screwed
through the plank C D. Sometimes the screw is applied to
the teeth of a wheel, as in fig. 46, where the thread of the
screw A B turns in the teeth of a wheel C D. In both these
cases, if a bar, as A E, be fixed to the end A of the screw; the
force, wherewith the end B of the screw in fig. 45 is
forced down, and the force, wherewith the teeth of the
wheel C D in fig. 44 are held, bears the same proportion
to the power applied to the end E of the bar; as the velocity,
wherewith the end E will move, when the screw is turned,
bears to the velocity, wherewith the end B of the screw in fig.
43, or the teeth of the wheel C D in fig. 46, will be moved.



55. The inclined plane affords also a means of raising
a weight with less force, than what is equal to the weight it
self. Suppose it were required to raise the globe A (in fig.
47.) from the ground B C up to the point, whose perpendicular
height from the ground is E D. If this globe be drawn
along the slant D F, less force will be required to raise it, than
if it were lifted directly up. Here if the force applied to the
globe bear the same proportion only to its weight, as E D bears
to F D, it will be sufficient to hold up the globe; and therefore
any addition to that force will put it in motion, and draw
it up; unless the globe, by pressing against the plane, whereon
it lies, adhere in some degree to the plane. This indeed
it must always do more or less, since no plane can be made so
absolutely smooth as to have no inequalities at all; nor yet so
infinitely hard, as not to yield in the least to the pressure of the
weight. Therefore the globe cannot be laid on such a plane,
whereon it will slide with perfect freedom, but they must in
some measure rub against each other; and this friction will
make it necessary to imploy a certain degree of force more,
than what is necessary to support the globe, in order to give
it any motion. But as all the mechanical powers are subject
in some degree or other to the like impediment from friction;
I shall here only shew what force would be necessary to sustain
the globe, if it could lie upon the plane without causing
any friction at all. And I say, that if the globe were
drawn by the cord G H, lying parallel to the plane D F; and
the force, wherewith the cord is pulled, bear the same
proportion to the weight of the globe, as E D bears to D F;
this force will sustain the globe. In order to the making
proof of this, let the cord G H be continued on, and turned
over the pulley I, and let the weight K be hung to it.
Now I say, if this weight bears the same proportion to
the globe A, as D E bears to D F, the weight will support
the globe. I think it is very manifest, that the center of the
globe A will lie in one continued line with the cord H G. Let
L be the center of the globe, and M the center of gravity of
the weight K. In the first place let the weight hang so, that
a line drawn from L to M shall lie horizontally; and I say,
if the globe be moved either up or down the plane D F, the
weight will so move along with it, that the center of gravity
common to both the weights shall continue in this line L M,
and therefore shall in no case descend. To prove this more
fully, I shall depart a little from the method of this treatise,
and make use of a mathematical proportion or two: but they
are such, as any person, who has read Euclid’s Elements,
will fully comprehend; and are in themselves so evident, that,
I believe, my readers, who are wholly strangers to geometrical
writings, will make no difficulty of admitting them. This
being premised, let the globe be moved up, till its center be
at G, then will M the center of gravity of the weight K be
sunk to N; so that M N shall be equal to G L. Draw N G
crossing the line M L in O; then I say, that O is the common
center of gravity of the two weights in this their new situation.
Let G P be drawn perpendicular to M L; then G L will
bear the same proportion to G P, as D F bears to D E; and
M N being equal to G L, M N will bear the same proportion
to G P, as D F bears to D E. But N O bears the same proportion
to O G, as M N bears to G P; consequently N O will bear
the same proportion to O G, as D F bears to D E. In the last
place, the weight of the globe A bears the same proportion to
the other weight K, as D F bears to D E; therefore N O bears
the same proportion to O G, as the weight of the globe A bears
to the weight K. Whence it follows, that, when the center
of the globe A is in G, and the center of gravity of the weight
K is in N, O will be the center of gravity common to both
the weights. After the same manner, if the globe had been
caused to descend, the common center of gravity would have
been found in this line M L. Since therefore no motion of
the globe either way will make the common center of gravity
descend, it is manifest, from what has been said above, that
the weights A and K counterpoize each other.

56. I shall now consider the case of pendulums. A
pendulum is made by hanging a weight to a line, so that it
may swing backwards and forwards. This motion the geometers
have very carefully considered, because it is the most
commodious instrument of any for the exact measurement of
time.

57. I have observed already[61], that if a body hanging
perpendicularly by a string, as the body A (in fig. 48.) hangs
by the string A B, be put so into motion, as to be made to ascend
up the circular arch A C; then as soon as it has arrived
at the highest point, to which the motion, that the body has
received, will carry it; it will immediately begin to descend,
and at A will receive again as great a degree of motion, as it
had at first. This motion therefore will carry the body up
the arch A D, as high as it ascended before in the arch A C.
Consequently in its return through the arch D A it will acquire
again at A its original velocity, and advance a second time up
the arch A C as high as at first; by this means continuing without
end its reciprocal motion. It is true indeed, that in fact
every pendulum, which we can put in motion, will gradually
lessen its swing, and at length stop, unless there be some
power constantly applied to it, whereby its motion shall be
renewed; but this arises from the resistance, which the body
meets with both from the air, and the string by which it is
hung: for as the air will give some obstruction to the progress
of the body moving through it; so also the string, whereon
the body hangs, will be a farther impediment; for this string
must either slide on the pin, whereon it hangs, or it must bend
to the motion of the weight; in the first there must be some
degree of friction, and in the latter the string will make some
resistance to its inflection. However, if all resistance could
be removed, the motion of a pendulum would be perpetual.

58. But to proceed, the first property, I shall take notice
of in this motion, is, that the greater arch the pendulous
body moves through, the greater time it takes up: though
the length of time does not increase in so great a proportion
as the arch. Thus if C D be a greater arch, and E F a lesser,
where C A is equal to A D, and E A equal to A F; the body,
when it swings through the greater arch C D, shall take up in
its swing from C to D a longer time than in swinging from E
to F, when it moves only in that lesser arch; or the time in
which the body let fall from C will descend through the arch
C A is greater than the time, in which it will descend through
the arch E A, when let fall from E. But the first of these
times will not hold the same proportion to the latter, as the
first arch C A bears to the other arch E A; which will appear
thus. Let C G and E H be two horizontal lines. It has been
remarked above[62], that the body in falling through the arch
C A will acquire as great a velocity at the point A, as it would
have gained by falling directly down through G A; and in
falling through the arch E A it will acquire in the point A only
that velocity, which it would have got in falling through
H A. Therefore, when the body descends through the greater
arch C A, it shall gain a greater velocity, than when it passes
only through the lesser; so that this greater velocity will in
some degree compensate the greater length of the arch.

59. The increase of velocity, which the body acquires
in falling from a greater height, has such an effect, that, if
straight lines be drawn from A to C and E, the body would
fall through the longer straight line C A just in the same time,
as through the shorter straight line E A. This is demonstrated
by the geometers, who prove, that if any circle, as A B C D
(fig. 49.) be placed in a perpendicular situation; a body
shall fall obliquely through every line, as A B drawn from the
lowest point A in the circle to any other point in the circumference
just in the same time, as would be imployed by the
body in falling perpendicularly down through the diameter
C A. But the time in which the body will descend through
the arch, is different from the time, which it would take up
in falling through the line A B.

60. It has been thought by some, that because in very
small arches this correspondent straight line differs but little
from the arch itself; therefore the descent through this
straight line would be performed in such small arches nearly
in the same time as through the arches themselves: so that
if a pendulum were to swing in small arches, half the time
of a single swing would be nearly equal to the time, in which
a body would fall perpendicularly through twice the length
of the pendulum. That is, the whole time of the swing, according
to this opinion, will be four fold the time required
for the body to fall through half the length of the pendulum;
because the time of the body’s falling down twice the
length of the pendulum is half the time required for the fall
through one quarter of this space, that is through half the
pendulum’s length. However there is here a mistake; for
the whole time of the swing, when the pendulum moves
through small arches, bears to the time required for a body
to fall down through half the length of the pendulum very
nearly the same proportion, as the circumference of a circle
bears to its diameter; that is very nearly the proportion of
355 to 113, or little more than the proportion of 3 to 1.
If the pendulum takes so great a swing, as to pass over an arch
equal to one sixth part of the whole circumference of the
circle, it will swing 115 times, while it ought according to
this proportion to have swung 117 times; so that, when it
swings in so large an arch, it loses something less than two
swings in an hundred. If it swing through 1/10 only of the
circle, it shall not lose above one vibration in 160. If it
swing in 1/20 of the circle, it shall lose about one vibration in
690. If its swing be confined to 1/40 of the whole circle, it
shall lose very little more than one swing in 2600. And
if it take no greater a swing than through 1/60 of the whole circle,
it shall not lose one swing in 5800.

61. Now it follows from hence, that, when pendulums
swing in small arches, there is very nearly a constant proportion
observed between the time of their swing, and the time,
in which a body would fall perpendicularly down through
half their length. And we have declared above, that the
spaces, through which bodies fall, are in a two fold proportion
of the times, which they take up in falling[63]. Therefore
in pendulums of different lengths, swinging through small
arches, the lengths of the pendulums are in a two fold or
duplicate proportion of the times, they take in swinging;
so that a pendulum of four times the length of another shall
take up twice the time in each swing, one of nine times the
length will make one swing only for three swings of the
shorter, and so on.

62. This proportion in the swings of different pendulums
not only holds in small arches; but in large ones also,
provided they be such, as the geometers call similar; that
is, if the arches bear the same proportion to the whole circumferences
of their respective circles. Suppose (in fig. 48.)
A B, C D to be two pendulums. Let the arch E F be described
by the motion of the pendulum A B, and the arch G H
be described by the pendulum C D; and let the arch E F bear
the same proportion to the whole circumference, which
would be formed by turning the pendulum A B quite round
about the point A, as the arch G H bears to the whole circumference,
that would be formed by turning the pendulum
C D quite round the point C. Then I say, the proportion,
which the length of the pendulum A B bears to the
length of the pendulum C D, will be two fold of the proportion,
which the time taken up in the description of the arch
E F bears to the time employed in the description of the arch
G H.

63. Thus pendulums, which swing in very small arches,
are nearly an equal measure of time. But as they are not such
an equal measure to geometrical exactness; the mathematicians
have found out a method of causing a pendulum so to swing,
that, if its motion were not obstructed by any resistance, it
would always perform each swing in the same time, whether
it moved through a greater, or a lesser space. This was first
discovered by the great Huygens, and is as follows. Upon
the straight line A B (in fig. 49.) let the circle C D E be so
placed, as to touch the straight line in the point C. Then let
this circle roll along upon the straight line A B, as a coach-wheel
rolls along upon the ground. It is evident, that, as
soon as ever the circle begins to move, the point C in the circle
will be lifted off from the straight line A B; and in the
motion of the circle will describe a crooked course, which is
represented by the line C F G H. Here the part C H of the
straight line included between the two extremities C and H
of the line C F G H will be equal to the whole circumference
of the circle C D E; and if C H be divided into two equal
parts at the point I, and the straight line I K be drawn perpendicular
to C H, this line I K will be equal to the diameter
of the circle C D E. Now in this line if a body were to be
let fall from the point H, and were to be carried by its weight
down the line H G K, as far as the point K, which is the lowest
point of the line C F G H; and if from any other point G a
body were to be let fall in the same manner; this body,
which falls from G, will take just the same time in coming to
K, as the body takes up, which falls from H. Therefore if
a pendulum can be so hung, that the ball shall move in the
line A G F E, all its swings, whether long or short, will be performed
in the same time; for the time, in which the ball
will descend to the point K, is always half the time of the
whole swing. But the ball of a pendulum will be made to
swing in this line by the following means. Let K I (in fig.
52.) be prolonged upwards to L, till I L is equal to I K.
Then let the line L M H equal and like to K H be applied, as
in the figure between the points L and H, so that the point
which in this line L M H answers to the point H in the line
K H shall be applied to the point L, and the point answering
to the point K shall be applied to the point H. Also let such
another line L N C be applied between L and C in the same
manner. This preparation being made; if a pendulum be
hung at the point L of such a length, that the ball thereof
shall reach to K; and if the string shall continually bend against
the lines H M L and L N C, as the pendulum swings
to and fro; by this means the ball shall constantly keep in
the line C K H.



64. Now in this pendulum, as all the swings, whether
long or short, will be performed in the same time; so the time
of each will exactly bear the same proportion to the time required
for a body to fall perpendicularly down, through half
the length of the pendulum, that is from I to K, as the circumference
of a circle bears to its diameter.

65. It may from hence be understood in some measure,
why, when pendulums swing in circular arches, the times of
their swings are nearly equal, if the arches are small, though
those arches be of very unequal lengths; for if with the semidiameter
L K the circular arch O K P be described, this arch
in the lower part of it will differ very little from the line
C K H.

66. It may not be amiss here to remark, that a body
will fall in this line C K H (fig. 53.) from C to any other
point, as Q or R in a shorter space of time, than if it moved
through the straight line drawn from C to the other point;
or through any other line whatever, that can be drawn between
these two points.



67. But as I have observed, that the time, which a pendulum
takes in swinging, depends upon its length; I shall
now say something concerning the way, in which this length
of the pendulum is to be estimated. If the whole ball of the
pendulum could be crouded into one point, this length, by
which the motion of the pendulum is to be computed, would
be the length of the string or rod. But the ball of the pendulum
must have a sensible magnitude, and the several parts
of this ball will not move with the same degree of swiftness;
for those parts, which are farthest from the point, whereon
the pendulum is suspended, must move with the greatest velocity.
Therefore to know the time in which the pendulum
swings, it is necessary to find that point of the ball, which
moves with the same degree of velocity, as if the whole ball
were to be contracted into that point.

68. This point is not the center of gravity, as I shall now
endeavour to shew. Suppose the pendulum A B (in fig. 54.)
composed of an inflexible rod A C and ball C B, to be fixed
on the point A, and lifted up into an horizontal situation.
Here if the rod were not fixed to the point A, the body C B
would descend directly with the whole force of its weight;
and each part of the body would move down with the same
degree of swiftness. But when the rod is fixed at the point
A, the body must fall after another manner; for the parts
of the body must move with different degrees of velocity,
the parts more remote from A descending with a swifter motion,
than the parts nearer to A; so that the body will receive
a kind of rolling motion while it descends. But it has
been observed above, that the effect of gravity upon any body
is the same, as if the whole force were exerted on the body’s
center of gravity[64].
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Since therefore the power of gravity
in drawing down the body must also communicate to it the
rolling motion just described; it seems evident, that the center
of gravity of the body cannot be drawn down as swiftly,
as when the power of gravity has no other effect to produce
on the body, than merely to draw it downward. If therefore
the whole matter of the body C B could be crouded into
its center of gravity, so that being united into one point, this
rolling motion here mentioned might give no hindrance to
its descent; this center would descend faster, than it can now
do. And the point, which now descends as fast, as if the
whole matter or the body C B were crouded into it, will be
farther removed from the point A, than the center of gravity
of the body C B.

69. Again, suppose the pendulum A B (in fig. 55.) to
hang obliquely. Here the power of gravity will operate less
upon the ball of the pendulum, than before: but the line D E
being drawn so, as to stand perpendicular to the rod A C of
the pendulum; the force of gravity upon the body C B,
now it is in this situation, will produce the same effect, as
if the body were to glide down an inclined plane in the position
of D E. But here the motion of the body, when the
rod is fixed to the point A, will not be equal to the uninterrupted
descent of the body down this plane; for the body
will here also receive the same kind of rotation in its motion,
as before; so that the motion of the center of gravity will in
like manner be retarded; and the point, which here descends
with that degree of swiftness, which the body would
have, if not hindered by being fixed to the point A; that is,
the point, which descends as fast, as if the whole body were
crouded into it, will be as far removed from the point A, as
before.

70. This point, by which the length of the pendulum is
to be estimated, is called the center of oscillation. And the
mathematicians have laid down general directions, whereby
to find this center in all bodies. If the globe A B (in fig. 56.)
be hung by the string C D, whose weight need not be regarded,
the center of oscillation is found thus. Let the
straight line drawn from C to D be continued through the
globe to F. That it will pass through the center of the globe
is evident. Suppose E to be this center of the globe; and
take the line G of such a length, that it shall bear the same
proportion to E D, as E D bears to E C. Then E H being
made equal to ⅖ of G, the point H shall be the center of oscillation[65].
If the weight of the rod C D is too considerable
to be neglected, divide C D (fig. 57) in I, that D I be equal
to ⅓, part of C D; and take K in the same proportion to C I, as
the weight of the globe A B to the weight of the rod C D.
Then having found H, the center of oscillation of the globe, as
before, divide I K in I, so that I L shall bear the same proportion
to L H, as the line C H bears to K; and L shall be
the center of oscillation of the whole pendulum.

71. This computation is made upon supposition, that the
center of oscillation of the rod C D, if that were to swing alone
without any other weight annexed, would be the point I.
And this point would be the true center of oscillation, so far
as the thickness of the rod is not to be regarded. If any one
chuses to take into consideration the thickness of the rod, he
must place the center of oscillation thereof so much below
the point I, that eight times the distance of the center from
the point I shall bear the same proportion to the thickness of
the rod, as the thickness of the rod bears to its length C D[66].

72. It has been observed above, that when a pendulum
swings in an arch of a circle, as here in fig. 58, the pendulum
A B swings in the circular arch C D; if you draw an horizontal
line, as E F, from the place whence the pendulum is
let fall, to the line A G, which is perpendicular to the horizon:
then the velocity, which the pendulum will acquire in coming
to the point G, will be the same, as any body would acquire
in falling directly down from F to G. Now this is to be
understood of the circular arch, which is described by the center
of oscillation of the pendulum. I shall here farther observe,
that if the straight line E G be drawn from the point,
whence the pendulum falls, to the lowest point of the arch;
in the same or in equal pendulums the velocity, which the
pendulum acquires in G, is proportional to this line: that is, if
the pendulum, after it has descended from E to G, be taken
back to H, and let fall from thence, and the line H G be
drawn; the velocity, which the pendulum shall acquire in
G by its descent from H, shall bear the same proportion to
the velocity, which it acquires in falling from E to G, as the
straight line H G bears to the straight line E G.

73. We may now proceed to those experiments upon the
percussion of bodies, which I observed above might be
made with pendulums. This expedient for examining the
effects of percussion was first proposed by our late great
architect Sir Christopher Wren. And it is as follows.
Two balls, as A and B (in fig. 59.) either equal or unequal,
are hung by two strings from two points C and D, so
that, when the balls hang down without motion, they shall
just touch each other, and the strings be parallel. Here if
one of these balls be removed to any distance from its perpendicular
situation, and then let fall to descend and strike against
the other; by the last preceding paragraph it will be
known, with what velocity this ball shall return into its first
perpendicular situation, and consequently with what force it
shall strike against the other ball; and by the height to which
this other ball ascends after the stroke, the velocity communicated
to this ball will be discovered. For instance, let the
ball A be taken up to E, and from thence be let fall to strike
against B, passing over in its descent the circular arch E F.
By this impulse let B fly up to G, moving through the circular
arch H G. Then E I and G K being drawn horizontally,
the ball A will strike against B with the velocity, which it
would acquire in falling directly down from I; and the ball
B has received a velocity, wherewith, if it had been thrown
directly upward, it would have ascended up to K. Likewise
if straight lines be drawn from E to F and from H to G, the
velocity of A, wherewith it strikes, will bear the same proportion
to the velocity, which B has received by the blow, as
the straight line E F bears to the straight line H G. In the
same manner by noting the place to which A ascends after the
stroke, its remaining velocity may be compared with that,
wherewith it struck against B. Thus may be experimented
the effects of the body A striking against B at rest. If both
the bodies are lifted up, and so let fall as to meet and impinge
against each other just upon the coming of both into their
perpendicular situation; by observing the places into which
they move after the stroke, the effects of their percussion in
all these cases may be found in the same manner as before.

74. Sir Isaac Newton has described these experiments;
and has shewn how to improve them to a greater exactness by
making allowance for the resistance, which the air gives to
the motion of the balls[67]. But as this resistance is exceeding
small, and the manner of allowing for it is delivered by himself
in very plain terms, I need not enlarge upon it here. I
shall rather speak to a discovery, which he made by these experiments
upon the elasticity of bodies. It has been explained
above[68], that when two bodies strike, if they be not elastic,
they remain contiguous after the stroke; but that if they are
elastic, they separate, and that the degree of their elasticity
determines the proportion between the celerity wherewith
they separate, and the celerity wherewith they meet. Now
our author found, that the degree of elasticity appeared in
the same bodies always the same, with whatever degree of
force they struck; that is, the celerity wherewith they separated,
always bore the same proportion to the celerity
wherewith they met: so that the elastic power in all the bodies,
he made trial upon, exerted it self in one constant proportion
to the compressing force. Our author made trial
with balls of wool bound up very compact, and found the
celerity with which they receded, to bear about the proportion
of 5 to 9 to the celerity wherewith they met; and in
steel he found nearly the same proportion; in cork the elasticity
was something less; but in glass much greater; for the
celerity, wherewith balls of that material separated after percussion,
he found to bear the proportion of 15 to 16 to the
celerity wherewith they met[69].

75. I shall finish my discourse on pendulums, with
this farther observation only, that the center of oscillation is
also the center of another force. If a body be fixed to any
point, and being put in motion turns round it; the body, if
uninterrupted by the power of gravity or any other means,
will continue perpetually to move about with the same equable
motion.  Now the force, with which such a body
moves, is all united in the point, which in relation to the
power of gravity is called the center of oscillation. Let the
cylinder A B C D (in fig. 60.) whose axis is E F, be fixed to
the point E. And supposing the point E to be that on which
the cylinder is suspended, let the center of oscillation be
found in the axis E F, as has been explained above[70]. Let G
be that center: then I say, that the force, wherewith this cylinder
turns round the point E, is so united in the point G, that
a sufficient force applied in that point shall stop the motion of
the cylinder, in such a manner, that the cylinder should immediately
remain without motion, though it were to be loosened
from the point E at the same instant, that the impediment
was applied to G: whereas, if this impediment had been
applied to any other point of the axis, the cylinder would
turn upon the point, where the impediment was applied. If
the impediment had been applied between E and G, the cylinder
would so turn on the point, where the impediment
was applied, that the end B C would continue to move on
the same way it moved before along with the whole cylinder;
but if the impediment were applied to the axis farther off from
E than G, the end A D of the cylinder would start out of its
present place that way in which the cylinder moved. From
this property of the center of oscillation, it is also called the
center of percussion. That excellent mathematician, Dr. Brook
Taylor, has farther improved this doctrine concerning the
center of percussion, by shewing, that if through this point
G a line, as G H I, be drawn perpendicular to E F, and lying
in the course of the body’s motion; a sufficient power applied
to any point of this line will have the same effect, as the
like power applied to G[71]: so that as we before shewed the
center of percussion within the body on its axis; by this means
we may find this center on the surface of the body also, for
it will be where this line H I crosses that surface.

76. I shall now proceed to the last kind of motion, to
be treated on in this place, and shew what line the power of
gravity will cause a body to describe, when it is thrown forwards
by any force. This was first discovered by the great
Galileo, and is the principle, upon which engineers
should direct the shot of great guns. But as in this case bodies
describe in their motion one of those lines, which in geometry
are called conic sections; it is necessary here to premise
a description of those lines. In which I shall be the
more particular, because the knowledge of them is not only
necessary for the present purpose, but will be also required
hereafter in some of the principal parts of this treatise.

77. The first lines considered by the ancient geometers
were the straight line and the circle. Of these they composed
various figures, of which they demonstrated many properties,
and resolved divers problems concerning them. These
problems they attempted always to resolve by the describing
straight lines and circles. For instance, let a square A B C D
(fig. 61.) be proposed, and let it be required to make another
square in any assigned proportion to this. Prolong one
side, as D A, of this square to E, till A E bear the same proportion
to A D, as the new square is to bear to the square A C.
If the opposite side B C of the square A C be also prolonged
to F, till B F be equal to A E, and E F be afterwards drawn,
I suppose my readers will easily conceive, that the figure A B F E
will bear to the square A B C D the same proportion, as the line
A E bears to the line A D. Therefore the figure A B F E will
be equal to the new square, which is to be found, but is not
it self a square, because the side A E is not of the same length
with the side E F. But to find a square equal to the figure
A B F E you must proceed thus. Divide the line D E into two
equal parts in the point G, and to the center G with the interval
G D describe the circle D H E I; then prolong the line A B,
till it meets the circle in K; and make the square A K L M, which
square will be equal to the figure A B F E, and bear to the square
A B C D the same proportion, as the line A E bears to A D.

78. I shall not proceed to the proof of this, having
only here set it down as a specimen of the method of resolving
geometrical problems by the description of straight lines
and circles. But there are some problems, which cannot be
resolved by drawing straight lines or circles upon a plane. For
the management therefore of these they took into consideration
solid figures, and of the solid figures they found that,
which is called a cone, to be the most useful.



79. A cone is thus defined by Euclide in his elements
of geometry[72]. If to the straight line A B (in fig. 62.)
another straight line, as A C, be drawn perpendicular, and the
two extremities B and C be joined by a third straight line
composing the triangle A C B (for so every figure is called,
which is included under three straight lines) then the two
points A and B being held fixed, as two centers, and the triangle
A C B being turned round upon the line A B, as on an axis;
the line A C will describe a circle, and the figure A C B will
describe a cone, of the form represented by the figure B C D E F
(fig. 63.) in which the circle C D E F is usually called the
base of the cone, and B the vertex.

80. Now by this figure may several problems be resolved,
which cannot by the simple description of straight lines and
circles upon a plane. Suppose for instance, it were required
to make a cube, which should bear any assigned proportion
to some other cube named. I need not here inform my readers,
that a cube is the figure of a dye. This problem was
much celebrated among the ancients, and was once inforced
by the command of an oracle.  This problem may be performed
by a cone thus. First make a cone from a triangle,
whose side A C shall be half the length of the side B C
Then on the plane A B C D (fig. 64.) let the line E F be
exhibited equal in length to the side of the cube proposed;
and let the line F G be drawn perpendicular to E F, and of
such a length, that it bear the same proportion to E F, as the
cube to be sought is required to bear to the cube proposed.
Through the points E, F, and G let the circle F H I be described.
Then let the line E F be prolonged beyond F to K, that F K
be equal to F E, and let the triangle F K L, having all its sides
F K, K L, L F equal to each other, be hung down perpendicularly
from the plane A B C D. After this, let another plane
M N O P be extended through the point L, so as to be equidistant
from the former plane A B C D, and in this plane let
the line Q L R be drawn so, as to be equidistant from the line
E F K. All this being thus prepared, let such a cone, as was
above directed to be made, be so applied to the plane M N O P,
that it touch this plane upon the line Q R, and that the vertex
of the cone be applied to the point L. This cone, by cutting
through the first plane A B C D, will cross the circle F H I before
described. And if from the point S, where the surface
of this cone intersects the circle, the line S T be drawn so, as
to be equidistant from the line E F; the line F T will be equal
to the side of the cube sought: that is, if there be two cubes
or dyes formed, the side of one being equal to E F, and the
side of the other equal to F T; the former of these cubes shall
bear the same proportion to the latter, as the line E F bears
to F G.

81. Indeed this placing a cone to cut through a plane is
not a practicable method of resolving problems. But when
the geometers had discovered this use of the cone, they applied
themselves to consider the nature of the lines, which
will be produced by the intersection of the surface of a cone
and a plane; whereby they might be enabled both to reduce
these kinds of solutions to practice, and also to render their
demonstrations concise and elegant.

82. Whenever the plane, which cuts the cone, is equidistant
from another plane, that touches the cone on the side;
(which is the case of the present figure;) the line, wherein
the plane cuts the surface of the cone, is called a parabola.
But if the plane, which cuts the cone, be so inclined to this
other, that it will pass quite through the cone (as in fig. 65.)
such a plane by cutting the cone produces the figure called
an ellipsis, in which we shall hereafter shew the earth and
other planets to move round the sun. If the plane, which
cuts the cone, recline the other way (as in fig. 66.) so as not
to be parallel to any plane, whereon the cone can lie, nor yet
to cut quite through the cone; such a plane shall produce in
the cone a third kind of line, which is called an hyperbola.
But it is the first of these lines named the parabola, wherein
bodies, that are thrown obliquely, will be carried by the force
of gravity; as I shall here proceed to shew, after having first
directed my readers how to describe this sort of line upon a
plane, by which the form of it may be seen.

83. To any straight line A B (fig. 67.) let a straight ruler
C D be so applied, as to stand against it perpendicularly. Upon
the edge of this ruler let another ruler E F be so placed, as to
move along upon the edge of the first ruler C D, and keep always
perpendicular to it. This being so disposed, let any
point, as G, be taken in the line A B, and let a string equal
in length to the ruler E F be fastened by one end to the point
G, and by the other to the extremity F of the ruler E F. Then
if the string be held down to the ruler E F by a pin H, as is
represented in the figure; the point of this pin, while the
ruler E F moves on the ruler C D, shall describe the line I K L,
which will be one part of the curve line, whose description
we were here to teach: and by applying the rulers in the like
manner on the other side of the line A B, we may describe
the other part I M of this line. If the distance C G be equal
to half the line E F in fig. 64, the line M I L will be that very
line, wherein the plane A B C D in that figure cuts the cone.

84. The line A I is called the axis of the parabola M I L,
and the point G is called the focus.

85. Now by comparing the effects of gravity upon falling
bodies, with what is demonstrated of this figure by the geometers,
it is proved, that every body thrown obliquely is
carried forward in one of these lines, the axis whereof is perpendicular to the horizon.

86. The geometers demonstrate, that if a line be drawn to
touch a parabola in any point, as the line A B (in fig. 68.) touches
the parabola C D, whose axis is Y Z, in the point E; and several
lines F G, H I, K L be drawn parallel to the axis of the parabola:
then the line F G will be to H I in the duplicate proportion of
E F to E H, and F G to K L in the duplicate proportion of E F
to E K; likewise H I to K L in the duplicate proportion of E H
to E K. What is to be understood by duplicate or two-fold
proportion, has been already explained[73]. Accordingly I
mean here, that if the line M be taken to bear the same proportion
to E H, as E H bears to E F, H I will bear the same
proportion to F G, as M bears to E F; and if the line N bears
the same proportion to E K, as E K bears to E F, K L will bear
the same proportion to F G, as N bears to E F; or if the line
O bear the same proportion to E K, as E K bears to E H, K L
will bear the same proportion to H I, as O bears to E H.

87. This property is essential to the parabola, being
so connected with the nature of the figure, that every line
possessing this property is to be called by this name.

88. Now suppose a body to be thrown from the point A
(in fig. 69.) towards B in the direction of the line A B. This
body, if left to it self, would move on with a uniform motion
through this line A B. Suppose the eye of a spectator to
be placed at the point C just under the point A; and let us
imagine the earth to be so put into motion along with the
body, as to carry the spectator’s eye along the line C D parallel
to A B; and that the eye would move on with the same velocity,
wherewith the body would proceed in the line A B, if
it were to be left to move without any disturbance from its
gravitation towards the earth. In this case if the body moved
on without being drawn towards the earth, it would appear
to the spectator to be at rest.  But if the power of gravity
exerted it self on the body, it would appear to the spectator
to fall directly down. Suppose at the distance of time,
wherein the body by its own progressive motion would have
moved from A to E, it should appear to the spectator to
have fallen through a length equal to E F: then the body at
the end of this time will actually have arrived at the point F.
If in the space of time, wherein the body would have moved
by its progressive motion from A to G, it would have appeared
to the spectator to have fallen down the space G H:
then the body at the end of this greater interval of time
will be arrived at the point H. Now if the line A F H I be
that, through which the body actually passes; from what
has here been said, it will follow, that this line is one of those,
which I have been describing under the name of the parabola.
For the distances E F, G H, through which the body is
seen to fall, will increase in the duplicate proportion of the
times[74]; but the lines A E, A G will be proportional to the
times wherein they would have been described by the single
progressive motion of the body: therefore the lines E F, G H
will be in the duplicate proportion of the lines A F, A G; and
the line A F H I possesses the property of the parabola.

89. If the earth be not supposed to move along with the
body, the case will be a little different. For the body being
constantly drawn directly towards the center of the earth,
the body in its motion will be drawn in a direction a little oblique
to that, wherein it would be drawn by the earth in motion,
as before supposed. But the distance to the center of the
earth bears so vast a proportion to the greatest length, to which
we can throw bodies, that this obliquity does not merit any
regard. From the sequel of this discourse it may indeed be
collected, what line the body being thrown thus would be
found to describe, allowance being made for this obliquity of
the earth’s action[75]. This is the discovery of Sir Is. Newton;
but has no use in this place. Here it is abundantly sufficient
to consider the body as moving in a parabola.

90. The line, which a projected body describes, being
thus known, practical methods have been deduced from
hence for directing the shot of great guns to strike any object
desired. This work was first attempted by Galileo,
and soon after farther improved by his scholar Torricelli;
but has lately been rendred more complete by the great
Mr. Cotes, whose immature death is an unspeakable loss to
mathematical learning. If it be required to throw a body
from the point A (in fig. 70.) so as to strike the point B;
through the points A, B draw the straight line C D, and erect
the line A E perpendicular to the horizon, and of four times
the height, from which a body must fall to acquire the velocity,
wherewith the body is intended to be thrown. Through
the points A and E describe a circle, that shall touch the line
C D in the point A. Then from the point B draw the line
B F perpendicular to the horizon, intersecting the circle in the
points G and H. This being done, if the body be projected
directly towards either of these points G or H, it shall fall upon
the point B; but with this difference, that, if it be thrown
in the direction A G, it shall sooner arrive at B, than if it were
projected in the direction A H. When the body is projected
in the direction A G; the time, it will take up in arriving at
B, will bear the same proportion to the time, wherein it would
fall down through one fourth part of A E, as A G bears to
half A E. But when the body is thrown in the direction of
A H, the time of its passing to B will bear the same proportion
to the time, wherein it would fall through one fourth part
of A E, as A H bears to half A E.

91. If the line A I be drawn so as to divide the angle under
E A D in the middle, and the line I K be drawn perpendicular
to the horizon; this line will touch the circle in the
point I, and if the body be thrown in the direction A I, it
will fall upon the point K: and this point K is the farthest
point in the line A D, which the body can be made to strike,
without increasing its velocity.

92. The velocity, wherewith the body every where
moves, may be found thus. Suppose the body to move in
the parabola A B (fig. 71.) Erect A C perpendicular to the
horizon, and equal to the height, from which a body must
fall to acquire the velocity, wherewith the body sets out from
A. If you take any points as D and E in the parabola, and
draw D F and E G parallel to the horizon; the velocity of the
body in D will be equal to what a body will acquire in falling
down by its own weight through C F, and in E the velocity
will be the same, as would be acquired in falling through
C G. Thus the body moves slowest at the highest point H
of the parabola; and at equal distances from this point will
move with equal swiftness, and descend from that highest
point through the line H B altogether like to the line A H in
which it ascended; abating only the resistance of the air,
which is not here considered. If the line H I be drawn from
the highest point H parallel to the horizon, A I will be equal
to ¼ of B G in fig. 70, when the body is projected in the direction
A G, and equal to ¼ of B H, when the body is thrown in
the direction A H provided A D be drawn horizontally.

93. Thus I have recounted the principal discoveries,
which had been made concerning the motion of bodies by
Sir Isaac Newton’s predecessors; all these discoveries, by
being found to agree with experience, contributing to establish
the laws of motion, from whence they were deduced.
I shall therefore here finish what I had to say upon those
laws; and conclude this chapter with a few words concerning
the distinction which ought to be made between absolute
and relative motion. For some have thought fit to confound
them together; because they observe the laws of motion to
take place here on the earth, which is in motion, after the same
manner as if it were at rest. But Sir Isaac Newton has
been careful to distinguish between the relative and absolute
consideration both of motion and time[76]. The astronomers
anciently found it necessary to make this distinction in time.
Time considered in it self passes on equably without relation to
any thing external, being the proper measure of the continuance
and duration of all things. But it is most frequently conceived
of by us under a relative view to some succession in
sensible things, of which we take cognizance.  The succession
of the thoughts in our own minds is that, from whence
we receive our first idea of time, but is a very uncertain measure
thereof; for the thoughts of some men flow on much
more swiftly, than the thoughts of others; nor does the same
person think equally quick at all times. The motions of the
heavenly bodies are more regular; and the eminent division
of time into night and day, made by the sun, leads us to
measure our time by the motion of that luminary: nor do we
in the affairs of life concern our selves with any inequality,
which there may be in that motion; but the space of time
which comprehends a day and night is rather supposed to be
always the same.  However astronomers anciently found
these spaces of time not to be always of the same length, and
have taught how to compute their differences.  Now the
time, when so equated as to be rendered perfectly equal, is
the true measure of duration, the other not. And therefore
this latter, which is absolutely true time, differs from the
other, which is only apparent. And as we ordinarily make
no distinction between apparent time, as measured by the
sun, and the true; so we often do not distinguish in our usual
discourse between the real, and the apparent or relative
motion of bodies; but use the same words for one, as we
should for the other.  Though all things about us are really
in motion with the earth; as this motion is not visible, we
speak of the motion of every thing we see, as if our selves
and the earth stood still. And even in other cases, where we
discern the motion of bodies, we often speak of them not in
relation to the whole motion we see, but with regard to other
bodies, to which they are contiguous. If any body were lying
on a table; when that table shall be carried along, we
say the body rests upon the table, or perhaps absolutely, that
the body is at rest. However philosophers must not reject all
distinction between true and apparent motions, any more than
astronomers do the distinction between true and vulgar time;
for there is as real a difference between them, as will appear
by the following consideration. Suppose all the bodies of
the universe to have their courses stopped, and reduced to
perfect rest. Then suppose their present motions to be again
restored; this cannot be done without an actual impression
made upon some of them at least. If any of them be
left untouched, they will retain their former state, that is,
still remain at rest; but the other bodies, which are
wrought upon, will have changed their former state of rest,
for the contrary state of motion. Let us now suppose the
bodies left at rest to be annihilated, this will make no alteration
in the state of the moving bodies; but the effect
of the impression, which was made upon them, will still
subsist. This shews the motion they received to be an absolute
thing, and to have no necessary dependence upon
the relation which the body said to be in motion has to any
other body[77].

94. Besides absolute and relative motion are distinguishable
by their Effects. One effect of motion is, that bodies,
when moved round any center or axis, acquire a certain
power, by which they forcibly press themselves from that center
or axis of motion. As when a body is whirled about in a
sling, the body presses against the sling, and is ready to fly
out as soon as liberty is given it. And this power is proportional
to the true, not relative motion of the body round such
a center or axis. Of this Sir Isaac Newton gives the following
instance[78]. If a pail or such like vessel near full of water
be suspended by a string of sufficient length, and be turned
about till the string be hard twisted. If then as soon as the
vessel and water in it are become still and at rest, the vessel be
nimbly turned about the contrary way the string was twisted,
the vessel by the strings untwisting it self shall continue its motion
a long time. And when the vessel first begins to turn, the
water in it shall receive little or nothing of the motion of the
vessel, but by degrees shall receive a communication of motion,
till at last it shall move round as swiftly as the vessel it
self. Now the definition of motion, which Des Cartes has
given us upon this principle of making all motion meerly relative,
is this: that motion, is a removal of any body from its
vicinity to other bodies, which were in immediate contact
with it, and are considered as at rest[79]. And if this be compared
with what he soon after says, that there is nothing real
or positive in the body moved, for the sake of which we
ascribe motion to it, which is not to be found as well in the
contiguous bodies, which are considered as at rest[80]; it will
follow from thence, that we may consider the vessel as at rest
and the water as moving in it: and the water in respect of
the vessel has the greatest motion, when the vessel first begins
to turn, and loses this relative motion more and more, till at
length it quite ceases. But now, when the vessel first begins
to turn, the surface of the water remains smooth and flat, as
before the vessel began to move; but as the motion of the
vessel communicates by degrees motion to the water, the surface
of the water will be observed to change, the water subsiding
in the middle and rising at the edges: which elevation
of the water is caused by the parts of it pressing from the axis,
they move about; and therefore this force of receding from
the axis of motion depends not upon the relative motion of
the water within the vessel, but on its absolute motion; for
it is least, when that relative motion is greatest, and greatest,
when that relative motion is least, or none at all.

95. Thus the true cause of what appears in the surface
of this water cannot be assigned, without considering the
water’s motion within the vessel. So also in the system of the
world, in order to find out the cause of the planetary motions,
we must know more of the real motions, which belong
to each planet, than is absolutely necessary for the uses
of astronomy. If the astronomer should suppose the earth to
stand still, he could ascribe such motions to the celestial bodies,
as should answer all the appearances; though he would
not account for them in so simple a manner, as by attributing
motion to the earth. But the motion of the earth must of
necessity be considered, before the real causes, which actuate
the planetary system, can be discovered.









Chap. III.

Of CENTRIPETAL FORCES.

WE have just been describing in the preceding chapter
the effects produced on a body in motion, from its
being continually acted upon by a power always equal in
strength, and operating in parallel directions[81]. But bodies
may be acted upon by powers, which in different places shall
have different degrees of force, and whose several directions
shall be variously inclined to each other. The most simple
of these in respect to direction is, when the power is
pointed constantly to one center. This is truly the case of
that power, whose effects we described in the foregoing chapter;
though the center of that power is so far removed, that
the subject then before us is most conveniently to be considered
in the light, wherein we have placed it: But Sir Isaac
Newton has considered very particularly this other case of
powers, which are constantly directed to the same center. It
is upon this foundation, that all his discoveries in the system
of the world are raised. And therefore, as this subject bears
so very great a share in the philosophy, of which I am discoursing,
I think it proper in this place to take a short view
of some of the general effects of these powers, before we
come to apply them particularly to the system of the world.



2. These powers or forces are by Sir Isaac Newton
called centripetal; and their first effect is to cause the body, on
which they act, to quit the straight course, wherein it would
proceed if undisturbed, and to describe an incurvated line,
which shall always be bent towards the center of the force.
It is not necessary, that such a power should cause the body
to approach that center. The body may continue to recede
from the center of the power, notwithstanding its being drawn
by the power; but this property must always belong to its
motion, that the line, in which it moves, will continually be
concave towards the center, to which the power is directed.
Suppose A (in fig. 72.) to be the center of a force. Let a
body in B be moving in the direction of the straight line B C,
in which line it would continue to move, if undisturbed; but
being attracted by the centripetal force towards A, the body
must necessarily depart from this line B C, and being drawn
into the curve line B D, must pass between the lines A B and
B C. It is evident therefore, that the body in B being gradually
turned off from the straight line B C, it will at first be
convex toward the line B C, and consequently concave towards
the point A: for these centripetal powers are supposed
to be in strength proportional to the power of gravity, and,
like that, not to be able after the manner of an impulse to turn
the body sensibly out of its course into a different one in an instant,
but to take up some space of time in producing a visible
effect. That the curve will always continue to have its
concavity towards A may thus appear. In the line B C near
to B take any point as E, from which the line E F G may be so
drawn, as to touch the curve line B D in some point as F. Now
when the body is come to F, if the centripetal power were immediately
to be suspended, the body would no longer continue
to move in a curve line, but being left to it self would
forthwith reassume a straight course; and that straight course
would be in the line F G: for that line is in the direction of
the body’s motion at the point F. But the centripetal force
continuing its energy, the body will be gradually drawn from
this line F G so as to keep in the line F D, and make that line
near the point F to be convex toward F G, and concave toward
A. After the same manner the body may be followed on in
its course through the line B D, and every part of that line be
shewn to be concave toward the point A.

3. This then is the constant character belonging to those
motions, which are carried on by centripetal forces; that the
line, wherein the body moves, is throughout concave towards
the center of the force. In respect to the successive distances
of the body from the center there is no general rule to be laid
down; for the distance of the body from the center may either
increase, or decrease, or even keep always the same. The
point A (in fig. 73.) being the center of a centripetal force,
let a body at B set out in the direction of the straight line B C
perpendicular to the line A B drawn from A to B. It will be
easily conceived, that there is no other point in the line B C so
near to A, as the point B; that A B is the shortest of all the
lines, which can be drawn from A to any part of the line B C;
all other lines, as A D, or A E, drawn from A to the line B C
being longer than A B.  Hence it follows, that the body setting
out from B, if it moved in the line B C, it would recede
more and more from the point A. Now as the operation of
a centripetal force is to draw a body towards the center of
the force: if such a force act upon a resting body, it must
necessarily put that body so into motion, as to cause it to
move towards the center of the force: if the body were of
it self moving towards that center, the centripetal force
would accelerate that motion, and cause it to move faster
down: but if the body were in such a motion, as being left
to itself it would recede from this center, it is not necessary,
that the action of a centripetal power upon it should
immediately compel the body to approach the center, from
which it would otherwise have receded; the centripetal
power is not without effect, if it cause the body to recede
more slowly from that center, than otherwise it would have
done. Thus in the case before us, the smallest centripetal
power, if it act on the body, will force it out of the line B C,
and cause it to pass in a bent line between B C and the point
A, as has been before explained. When the body, for instance,
has advanced to the line A D, the effect of the centripetal
force discovers it self by having removed the body out
of the line B C, and brought it to cross the line A D somewhere
between A and D: suppose at F. Now A D being
longer than A B, A F may also be longer than A B. The centripetal
power may indeed be so strong, that A F shall be
shorter than A B; or it may be so evenly balanced with the
progressive motion of the body, that A F and A B shall be just
equal: and in this last case, when the centripetal force is of
that strength, as constantly to draw the body as much toward
the center, as the progressive motion would carry it off, the
body will describe a circle about the center A, this center of
the force being also the center of the circle.

4. If the body, instead of setting out in the line B C perpendicular
to A B, had set out in another line B G more inclined
towards the line A B, moving in the curve line B H;
then as the body, if it were to continue its motion in the line
B G, would for some time approach the center A; the centripetal
force would cause it to make greater advances toward
that center. But if the body were to set out in the line B I reclined
the other way from the perpendicular B C, and were to
be drawn by the centripetal force into the curve line B K; the
body, notwithstanding any centripetal force, would for some
time recede from the center; since some part at least of the
curve line B K lies between the line B I and the perpendicular B C.

5. Thus far we have explained such effects, as attend
every centripetal force. But as these forces may be very different
in regard to the different degrees of strength, wherewith
they act upon bodies in different places; I shall now proceed
to make mention in general of some of the differences
attending these centripetal motions.

6. To reassume the consideration of the last mentioned
case. Suppose a centripetal power directed toward the point
A (in fig. 74.) to act on a body in B, which is moving in
the direction of the straight line B C, the line B C reclining
off from A B. If from A the straight lines A D, A E, A F are
drawn at pleasure to the line C B; the line C B being prolonged
beyond B to G, it appears that A D is inclined to the line
G C more obliquely, than A B is inclined to it, A E is inclined
more obliquely than A D, and A F more than A E. To
speak more correctly, the angle under A D G is less than that
under A B G, the angle under A E G less than that under
A D G, and the angle under A F G less than that under A E G.
Now suppose the body to move in the curve line B H I K.
Then it is here likewise evident, that the line B H I K being
concave towards A, and convex towards the line B C,
it is more and more turned off from the line B C; so
that in the point H the line A H will be less obliquely inclined
to the curve line B H I K, than the same line A H D is inclined
to B C at the point D; at the point I the inclination of the
line A I to the curve line will be more different from the inclination
of the same line A I E to the line B C, at the point E;
and in the points K and F the difference of inclination will be
still greater; and in both the inclination at the curve will be
less oblique, than at the straight line B C. But the straight
line A B is less obliquely inclined to B G, than A D is inclined
towards D G: therefore although the line A H be less obliquely
inclined towards the curve H B, than the same line A H D is
inclined towards D G; yet it is possible, that the inclination
at H may be more oblique, than the inclination at B. The inclination
at H may indeed be less oblique than the other, or
they may be both the same. This depends upon the degree
of strength, wherewith the centripetal force exerts it self,
during the passage of the body from B to H. After the same
manner the inclinations at I and K depend entirely on the degree
of strength, wherewith the centripetal force acts on the
body in its passage from H to K: if the centripetal force be
weak enough, the lines A H and A I drawn from the center A
to the body at H and at I shall be more obliquely inclined to
the curve, than the line A B is inclined towards B G. The centripetal
force may be of that strength as to render all these inclinations
equal, or if stronger, the inclinations at I and K
will be less oblique than at B. Sir Isaac Newton has particularly
shewn, that if the centripetal power decreases after
a certain manner with the increase of distance, a body may
describe such a curve line, that all the lines drawn from the
center to the body shall be equally inclined to that curve line.[82]
But I do not here enter into any particulars, my present intention
being only to shew, that it is possible for a body to be
acted upon by a force continually drawing it down towards a
center, and yet that the body shall continue to recede from
that center; for here as long as the lines A H, A I, &c drawn
from the center A to the body do not become less oblique to
the curve, in which the body moves; so long shall those lines
perpetually increase, and consequently the body shall more
and more recede from the center.

7. But we may observe farther, that if the centripetal
power, while the body increases its distance from the center,
retain sufficient strength to make the lines drawn from the
center to the body to become at length less oblique to the
curve; then if this diminution of the obliquity continue, till
at last the line drawn from the center to the body shall cease
to be obliquely inclined to the curve, and shall become perpendicular
thereto; from this instant the body shall no longer
recede from the center, but in its following motion it shall
again descend, and shall describe a curve line in all respects
like to that, which it has described already; provided the
centripetal power, every where at the same distance from the
center, acts with the same strength. So we observed in the
preceding chapter, that, when the motion of a projectile became
parallel to the horizon, the projectile no longer ascended,
but forthwith directed its course downwards, descending
in a line altogether like that, wherein it had before ascended[83].

8. This return of the body may be proved by the following
proposition: that if the body in any place, suppose at
I, were to be stopt, and be thrown directly backward with the
velocity, wherewith it was moving forward in that point I;
then the body, by the action of the centripetal force upon it,
would move back again over the path I H B, in which it had
before advanced forward, and would arrive again at the point
B in the same space of time, as was taken up in its passage
from B to I; the velocity of the body at its return to the point
B being the same, as that wherewith it first set out from that
point. To give a full demonstration of this proposition,
would require that use of mathematics, which I here purpose
to avoid; but, I believe, it will appear in great measure
evident from the following considerations.



9. Suppose (in fig. 75.) that a body were carried after
the following manner through the bent figure A B C D E F,
composed of the straight lines A B, B C, C D, D E, E F. First
let it be moving in the line A B, from A towards B, with any
uniform velocity. At B let the body receive an impulse directed
toward some point, as G, taken within the concavity
of the figure.  Now whereas this body, when once moving
in the straight line A B, will continue to move on in this line,
so long as it shall be left to it self; but being disturbed at the
point B in its motion by the impulse, which there acts upon
it, it will be turned out of this line A B into some other straight
line, wherein it will afterwards continue to move, as long as it
shall be left to itself. Therefore let this impulse have strength
sufficient to turn the body into the line B C. Then let the
body move on undisturbed from B to C, but at C let it receive
another impulse pointed toward the same point G, and of sufficient
strength to turn the body into the line C D. At D let
a third impulse, directed like the rest to the point G, turn the
body into the line D E. And at E let another impulse, directed
likewise to the point G, turn the body into the line E F.
Now, I say, if the body while moving in the line E F
be stopt, and turned back again in this line with the same
velocity, as that wherewith it was moving forward in this line;
then by the repetition of the former impulse at E the body will
be turned into the line E D, and move in it from E to D with
the same velocity as before it moved with from D to E; by
the repetition of the impulse at D, when the body shall
have returned to that point, it will be turned into the line
D C; and by the repetition of the other impulses at C and B
the body will be brought back again into the line B A, with
the velocity, wherewith it first moved in that line.

10. This I prove as follows. Let D E and F E be continued
beyond E. In D E thus continued take at pleasure the
length E H, and let H I be so drawn, as to be equidistant from
the line G E. Then, by what has been written upon the second
law of motion[84], it follows, that after the impulse on
the body in E it will move through E I in the same time, as
it would have imployed in moving from E to H, with the velocity
which it had in the line D E. In F E prolonged take
E K equal to E I, and draw K L equidistant from G E. Then,
because the body is thrown back in the line F E with the same
velocity as that wherewith it went forward in that line; if,
when the body was returned to E, it were permitted to go
straight on, it would pass through E K in the same time, as it
took up in passing through E I, when it went forward in the
line E F. But, if at the body’s return to the point E, such an
impulse directed toward the point D were to be given it, whereby
it should be turned into the line D E; I say, that the
impulse necessary to produce this effect must be equal to
that, which turned the body out of the line D E into E F;
and that the velocity, with which the body will return into
the line E D, is the same, as that wherewith it before moved
through this line from D to E. Because E K is equal to E I, and
K L and H I, being each equidistant from G E, are by consequence
equidistant from each other; it follows, that the two
triangular figures I E H and K E L are altogether like and equal
to each other. If I were writing to mathematicians, I might
refer them to some proportions in the elements of Euclid
for the proof of this[85] but as I do not here address my self to
such, so I think this assertion will be evident enough without
a proof in form; at least I must desire my readers to receive
it as a proposition true in geometry. But these two triangular
figures being altogether like each other and equal; as E K
is equal to E I, so E L is equal to E H, and K L equal to H I.
Now the body after its return to E being turned out of the line
F E into E D by an impulse acting upon it in E, after the manner
above expressed; the body will receive such a velocity by
this impulse, as will carry it through E L in the same time, as it
would have imployed in passing through E K, if it had gone
on in that line undisturbed. And it has already been observed,
that the time, in which the body would pass over E K
with the velocity wherewith it returns, is equal to the time
it took up in going forward from E to I; that is, equal to the
time, in which it would have gone through E H with the velocity,
wherewith it moved from D to E. Therefore the time,
in which the body will pass through E L after its return into
the line E D, is the same, as would have been taken up by
the body in passing through E H with the velocity, wherewith
the body first moved in the line D E. Since therefore
E L and E H are equal, the body returns into the line D E with
the velocity, which it had before in that line. Again I say,
the second impulse in E is equal to the first. By what has
been said on the second law of motion concerning the effect of
oblique impulses[86], it will be understood, that the impulse in E,
whereby the body was turned out of the line D E into the line
E F, is of such strength, that if the body had been at rest,
when this impulse had acted upon it, this impulse would have
communicated so much motion to the body, as would have
carried it through a length equal to H I, in the time wherein
the body would have passed from E to H, or in the time
wherein it passed from E to I. In the same manner, on the return
of the body, the impulse in E, whereby the body is turned
out of the line F E into E D, is of such strength, that if it
had acted on the body at rest, it would have caused the body
to move through a length equal to K L, in the same time, as
the body would imploy in passing through E K with the velocity,
wherewith it returns in the line F E. Therefore the second
impulse, had it acted on the body at rest, would have
caused it to move through a length equal to K L in the same
space of time, as would be taken up by the body in passing
through a length equal to H I, were the first impulse to act on
the body when at rest. That is, the effects of the first and
second impulse on the body when at rest would be the same;
for K L and H I are equal: consequently the second impulse
is equal to the first.

11. Thus if the body be returned through F E with the
velocity, wherewith it moved forward; we have shewn how
by the repetition of the impulse, which acted on it at E, the
body will return again into the line D E with the velocity,
which it had before in that line. By the same process of reasoning
it may be proved, that, when the body is returned
back to D, the impulse, which before acted on the body at
that point, will throw the body into the line D C with the velocity,
which it first had in that line; and the other impulses
being successively repeated, the body will at length be brought
back again into the line B A with the velocity, wherewith it
set out in that line.

12. Thus these impulses, by acting over again in an inverted
order all their operation on the body, bring it back again
through the path, in which it had proceeded forward. And
this obtains equally, whatever be the number of the straight
lines, whereof this curve figure is composed. Now by a method
of reasoning, which Sir Isaac Newton makes great
use of, and which he introduced into geometry, thereby
greatly inriching that science[87]; we might make a transition
from this figure composed of a number of straight lines to a
figure of one continued curvature, and from a number of separate
impulses repeated at distinct intervals to a continual
centripetal force, and shew, that, because what has been
here advanced holds universally true, whatever be the number
of straight lines, whereof the curve figure A C F is composed,
and howsoever frequently the impulses at the angles of
this figure are repeated; therefore the same will still remain
true, although this figure should be converted into one of a
continued curvature, and these distinct impulses should be
changed into a continual centripetal force. But as the explaining
this method of reasoning is foreign to my present design;
so I hope my readers, after what has been said, will find no
difficulty in receiving the proposition laid down above: that, if
the body, which has moved through the curve line B H I (in fig.
74.) from B to I, when it is come to I, be thrown directly back
with the same velocity as that, wherewith it proceeded forward,
the centripetal force, by acting over again all its operation on
the body, shall bring the body back again in the line I H B:
and as the motion of the body in its course from B to I was every
where in such a manner oblique to the line drawn from the
center to the body, that the centripetal power acted in some
degree against the body’s motion, and gradually diminished it;
so in the return of the body, the centripetal power will every
where draw the body forward, and accelerate its motion by
the same degrees, as before it retarded it.

13. This being agreed, suppose the body in K to have the
line A K no longer obliquely inclined to its motion. In this case,
if the body be turned back, in the manner we have been considering,
it must be directed back perpendicularly to A K.
But if it had proceeded forward, it would likewise have moved
in a direction perpendicular to A K; consequently, whether
it move from this point K backward or forward, it must
describe the same kind of course. Therefore since by being
turned back it will go over again the line K I H B; if it be permitted
to go forward, the line K L, which it shall describe,
will be altogether similar to the line K H B.



14. In like manner we may determine the nature of the
motion, if the line, wherein the body sets out, be inclined (as
in fig. 76.) down toward the line B A drawn between the
body and the center. If the centripetal power so much increases
in strength, as the body approaches, that it can bend
the path, in which the body moves, to that degree, as to cause
all the lines as A H, A I, A K to remain no less oblique to the
motion of the body, than A B is oblique to B C; the body
shall continually more and more approach the center. But
if the centripetal power increases in so much less a degree, as
to permit the line drawn from the center to the body, as it accompanies
the body in its motion, at length to become more
and more erect to the curve wherein the body moves, and in
the end, suppose at K, to become perpendicular thereto; from
that time the body shall rise again. This is evident from what
has been said above; because for the very same reason here also
the body shall proceed from the point K to describe a line altogether
similar to the line, in which it has moved from B to K.
Thus, as it was observed of the pendulum in the preceding chapter[88],
that all the time it approaches towards being perpendicular
to the horizon, it more and more descends; but, as soon as it
is come into that perpendicular situation, it immediately rises
again by the same degrees, as it descended by before: so here
the body more and more approaches the center all the time it
is moving from B to K; but thence forward it rises from the
center again by the same degrees, as it approached by before.



15. If (in fig. 77.) the line B C be perpendicular to A B; then
it has been observed above[89], that the centripetal power may
be so balanced with the progressive motion of the body, that
the body may keep moving round the center A constantly at
the same distance; as a body does, when whirled about any
point, to which it is tyed by a string. If the centripetal power
be too weak to produce this effect, the motion of the body
will presently become oblique to the line drawn from itself to
the center, after the manner of the first of the two cases,
which we have been considering. If the centripetal power
be stronger, than what is required to carry the body in a circle,
the motion of the body will presently fall in with the second
of the cases, we have been considering.

16. If the centripetal power so change with the change of
distance, that the body, after its motion has become oblique
to the line drawn from itself to the center, shall again become
perpendicular thereto; which we have shewn to be possible
in both the cases treated of above; then the body shall in its
subsequent motion return again to the distance of A B, and
from that distance take a course similar to the former: and
thus, if the body move in a space free from all resistance,
which has been here all along supposed; it shall continue in
a perpetual motion about the center, descending and ascending
alternately therefrom. If the body setting out from B (in
fig. 78.) in the line B C perpendicular to A B, describe the line
B D E, which in D shall be oblique to the line A D, but in E
shall again become erect to A E drawn from the body in E to the
center A; then from this point E the body shall describe the
line E F G altogether like to the line B D E, and at G shall be
at the same distance from A, as it was at B. But likewise the
line A G shall be erect to the body’s motion. Therefore the
body shall proceed to describe from G the line G H I altogether
similar to the line G F E, and at I have the same distance
from the center, as it had at E; and also have the line A I erect
to its motion: so that its following motion must be in the line
I K L similar to I H G, and the distance A L equal to A G. Thus
the body will go on in a perpetual round without ceasing, alternately
inlarging and contracting its distance from the center.
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17. If it so happen, that the point E fall upon the line B A
continued beyond A; then the point G will fall on B, I on E,
and L also on B; so that the body will describe in this case a
simple curve line round the center A, like the line B D E F in
fig. 79, in which it will continually revolve from B to E
and from E to B without end.

18. If A E in fig. 78 should happen to be perpendicular
to A B, in this case also a simple line will be described; for the
point G will fall on the line B A prolonged beyond A, the
point I on the line A E prolonged beyond A, and the point L
on B: so that the body will describe a line like the curve line
B E G I in fig. 80, in which the opposite points B and G
are equally distant from A, and the opposite points E and I
are also equally distant from the same point A.



19. In other cases the line described will have a more
complex figure.

20. Thus we have endeavoured to shew how a body,
while it is constantly attracted towards a center, may notwithstanding
by its progressive motion keep it self from falling
down to that center; but describe about it an endless circuit,
sometimes approaching toward that center, and at other
times as much receding from the same.

21. But here we have supposed, that the centripetal power
is of equal strength every where at the same distance from the
center. And this is the case of that centripetal power, which
will hereafter be shewn to be the cause, that keeps the planets
in their courses.  But a body may be kept on in a perpetual
circuit round a center, although the centripetal power have
not this property. Indeed a body may by a centripetal force
be kept moving in any curve line whatever, that shall have its
concavity turned every where towards the center of the force.

22. To make this evident I shall first propose the case of a
body moving through the incurvated figure A B C D E (in fig. 81.)
which is composed of the straight lines A B, B C, C D, D E, and
E A; the motion being carried on in the following manner.
Let the body first move in the line A B with any uniform velocity.
When it is arrived at the point B, let it receive an impulse
directed toward any point F taken within the figure;
and let the impulse be of that strength as to turn the body out
of the line A B into the line B C. The body after this impulse,
while left to itself, will continue moving in the line B C.
At C let the body receive another impulse directed towards
the same point F, of such strength, as to turn the body from
the line B C into the line C D. At D let the body by another
impulse, directed likewise to the point F, be turned out of the
line C D into D E. And at E let another impulse, directed toward
the point F, turn the body from the line D E into E A.
Thus we see how a body may be carried through the figure
A B C D E by certain impulses directed always toward the same
center, only by their acting on the body at proper intervals,
and with due degrees of strength.

23. But farther, when the body is come to the point A, if
it there receive another impulse directed like the rest toward the
point F, and of such a degree of strength as to turn the body
into the line A B, wherein it first moved; I say that the body
shall return into this line with the same velocity, as it had at first.

24. Let A B be prolonged beyond B at pleasure, suppose to
G; and from G let G H be drawn, which if produced should
always continue equidistant from B F, or, according to the
more usual phrase, let G H be drawn parallel to B F. Then
it appears, from what has been said upon the second law of
motion[90], that in the time, wherein the body would have moved
from B to G, had it not received a new impulse in B, by the
means of that impulse it will have acquired a velocity, which
will carry it from B to H. After the same manner, if C I be
taken equal to B H, and I K be drawn equidistant from or parallel
to C F; the body will have moved from C to K with the
velocity, which it has in the line C D, in the same time, as it
would have employed in moving from C to I with the velocity,
it had in the line B C. Therefore since C I and B H are equal,
the body will move through C K in the same time, as it would
have taken up in moving from B to G with the original velocity,
wherewith it moved through the line A B. Again, D L
being taken equal to C K and L M drawn parallel to D F; for
the same reason as before the body will move through D M with
the velocity, which it has in the line D E, in the same time,
as it would imploy in moving through B G with its original velocity.
In the last place, if E N be taken equal to D M, and
N O be drawn parallel to E F; likewise if A P be taken equal
to E O, and P Q be drawn parallel to A F: then the body with
the velocity, wherewith it returns into the line A B, will pass
through A Q in the same time, as it would have imployed in
passing through B G with its original velocity.  Now as all
this follows directly from what has above been delivered, concerning
the effect of oblique impulses impressed upon bodies
in motion; so we must here observe farther, that it can be
proved by geometry, that A Q will always be equal to E G.
The proof of this I am obliged, from the nature of my present
design, to omit; but this geometrical proportion being
granted, it follows, that the body has returned into the line
A B with the velocity, which it had, when it first moved in
that line; for the velocity, with which it returns into the line
A B, will carry it over the line A Q in the same time, as would
have been taken up in its passing over an equal line B G with
the original velocity.

25. Thus we have found, how a body may be carried round
the figure A B C D E by the action of certain impulses upon it
which should all be pointed toward one center. And we likewise
see, that when the body is brought back again to the
point, whence it first set out; if it there meet with an impulse
sufficient to turn it again into the line, wherein it moved
at first, its original velocity will be again restored; and by
the repetition of the same impulses, the body will be carried
again in the same round. Therefore if these impulses, which
act on the body at the points B, C, D, E, and A, continue always
the same, the body will make round this figure innumerable
revolutions.

26. The proof, which we have here made use of, holds the
same in any number of straight lines, whereof the figure A B D
should be composed; and therefore by the method of reasoning
referred to above[91] we are to conclude, that what has here
been said upon this rectilinear figure, will remain true, if this
figure were changed into one of a continued curvature, and
instead of distinct impulses acting by intervals at the angles of
this figure, we had a continual centripetal force. We have
therefore shewn, that a body may be carried round in any
curve figure A B C ( fig. 82.) which shall every where be
concave towards any one point as D, by the continual action
of a centripetal power directed to that point, and when it is
returned to the point, from whence it set out, it shall recover
again the velocity, with which it departed from that point.
It is not indeed always necessary, that it should return again
into its first course; for the curve line may have some such
figure as the line A B C D B E in fig. 83. In this curve line,
if the body set out from B in the direction B F, and moved
through the line B C D, till it returned to B; here the body
would not enter again into the line B C D, because the two
parts B D and B C of the curve line make an angle at the point
B: so that the centripetal power, which at the point B could
turn the body from the line B F into the curve, will not be
able to turn the body into the line B C from the direction, in
which it returns to the point B; a forceable impulse must be
given the body in the point B to produce that effect.

27. If at the point B, whence the body sets out, the curve
line return into it self (as in fig. 82;) then the body, upon
its arrival again at B, may return into its former course,
and thus make an endless circuit about the center of the centripetal
power.

28. What has here been said, I hope, will in some measure
enable my readers to form a just idea of the nature of
these centripetal motions.

29. I have not attempted to shew, how to find particularly,
what kind of centripetal force is necessary to carry a body in
any curve line proposed. This is to be deduced from the degree
of curvature, which the figure has in each point of it,
and requires a long and complex mathematical reasoning.
However I shall speak a little to the first proportion, which
Sir Isaac Newton lays down for this purpose. By this
proposition, when a body is found moving in a curve line, it
may be known, whether the body be kept in its course by a
power always pointed toward the same center; and if it be so,
where that center is placed. The proposition is this: that if
a line be drawn from some fixed point to the body, and remaining
by one extream united to that point, it be carried
round along with the body; then, if the power, whereby
the body is kept in its course, be always pointed to this fixed
point as a center, this line will move over equal spaces in equal
portions of time. Suppose a body were moving through the
curve line A B C D (in fig. 84.) and passed over the arches A B,
B C, C D in equal portions of time; then if a point, as E, can
be found, from whence the line E A being drawn to the body
in A, and accompanying the body in its motion, it shall make
the spaces E A B, E B C, and E C D equal, over which it passes,
while the body describes the arches A B, B C, and C D:
and if this hold the same in all other arches, both great and
small, of the curve line A B C D, that these spaces are always
equal, where the times are equal; then is the body kept in
this line by a power always pointed to E as a center.

30. The principle, upon which Sir Isaac Newton has
demonstrated this, requires but small skill in geometry to comprehend.
I shall therefore take the liberty to close the present
chapter with an explication of it; because such an example
will give the clearest notion of our author’s method of applying
mathematical reasoning to these philosophical subjects.

31. He reasons thus. Suppose a body set out from the point
A (in fig. 85.) to move in the straight line A B; and after it
had moved for some time in that line, it were to receive an
impulse directed to some point as C. Let it receive that impulse
at D; and thereby be turned into the line D E; and let
the body after this impulse take the same length of time in
passing from D to E, as it imployed in the passing from A to
D. Then the straight lines C A, C D, and C E being drawn,
Sir Isaac Newton proves, that the and triangular spaces
C A D and C D E are equal. This he does in the following
manner.

32. Let E F be drawn parallel to C D. Then, from what has
been said upon the second law of motion[92], it is evident, that
since the body was moving in the line A B, when it received
the impulse in the direction D C; it will have moved after
that impulse through the line D E in the same time, as it would
have taken up in moving through D F, provided it had received
no disturbance in D. But the time of the body’s moving
from D to E is supposed to be equal to the time of its moving
through A D; therefore the time, which the body would
have imployed in moving through D F, had it not been disturbed
in D, is equal to the time, wherein it moved through
A D: consequently D F is equal in length to A D; for if the
body had gone on to move through the line A B without interruption,
it would have moved through all parts thereof
with the same velocity, and have passed over equal parts of
that line in equal portions of time. Now C F being drawn,
since A D and D F are equal, the triangular space C D F is equal
to the triangular space C A D. Farther, the line E F being
parallel to C D, it is proved by Euclid, that the triangle
C E D is equal to the triangle C F D[93]: therefore the triangle
C E D is equal to the triangle C A D.

33. After the same manner, if the body receive at E another
impulse directed toward the point C, and be turned by
that impulse into the line E G; if it move afterwards from E to
G in the same space of time, as was taken up by its motion from
D to E, or from A to D; then C G being drawn, the triangle
C E G is equal to C D E. A third impulse at G directed as the
two former to C, whereby the body shall be turned into the
line G H, will have also the like effect with the rest. If the
body move over G H in the same time, as it took up in moving
over E G, the triangle C G H will be equal to the triangle
C E G. Lastly, if the body at H be turned by a fresh impulse
directed toward C into the line H I, and at I by another impulse
directed also to C be turned into the line I K; and if the
body move over each of the lines H I, and I K in the same
time, as it imployed in moving over each of the preceding
lines A D, D E, E G, and G H: then each of the triangles
C H I, and C I K will be equal to each of the preceding. Likewise
as the time, in which the body moves over A D E, is
equal to the time of its moving over E G H, and to the time
of its moving over H I K; the space C A D E will be equal to
the space C E G H, and to the space C H I K. In the same
manner as the time, in which the body moved over A D E G
is equal to the time of its moving over G H I K, so the space
C A D E G will be equal to the space C G H I K.

34. From this principle Sir Isaac Newton demonstrates
the proposition mentioned above, by that method of arguing
introduced by him into geometry, whereof we have before
taken notice[94], by making according to the principles of that
method a transition from this incurvated figure composed of
straight lines, to a figure of continued curvature; and by
shewing, that since equal spaces are described in equal times
in this present figure composed of straight lines, the same relation
between the spaces described and the times of their description
will also have place in a figure of one continued
curvature. He also deduces from this proposition the reverse
of it; and proves, that whenever equal spaces are continually
described; the body is acted upon by a centripetal force
directed to the center, at which the spaces terminate.









Chap. IV.

Of the RESISTANCE of FLUIDS.

BEFORE the cause can be discovered, which keeps the
planets in motion, it is necessary first to know, whether
the space, wherein they move, is empty and void, or filled
with any quantity of matter. It has been a prevailing
opinion, that all space contains in it matter of some kind or
other; so that where no sensible matter is found, there was
yet a subtle fluid substance by which the space was filled up;
even so as to make an absolute plenitude. In order to examine
this opinion, Sir Isaac Newton has largely considered
the effects of fluids upon bodies moving in them.

2. These effects he has reduced under these three heads.
In the first place he shews how to determine in what manner
the resistance, which bodies suffer, when moving in a fluid,
gradually increases in proportion to the space, they describe
in any fluid; to the velocity, with which they describe it;
and to the time they have been in motion. Under the second
head he considers what degree of resistance different
bodies moving in the same fluid undergo, according to the
different proportion between the density of the fluid and the
density of the body. The densities of bodies, whether fluid
or solid, are measured by the quantity of matter, which is
comprehended under the same magnitude; that body being
the most dense or compact, which under the same bulk contains
the greatest quantity of solid matter, or which weighs
most, the weight of every body being observed above to be
proportional to the quantity of matter in it[95]. Thus water is
more dense than cork or wood, iron more dense than water,
and gold than iron. The third particular Sir Is. Newton
considers concerning the resistance of fluids is the influence,
which the diversity of figure in the resisted body has upon its
resistance.

3. For the more perfect illustration of the first of these
heads, he distinctly shews the relation between all the particulars
specified upon three different suppositions. The first
is, that the same body be resisted more or less in the simple
proportion to its velocity; so that if its velocity be doubled,
its resistance shall become threefold. The second is of the
resistance increasing in the duplicate proportion of the velocity;
so that, if the velocity of a body be doubled, its resistance
shall be rendered four times; and if the velocity be
trebled, nine times as great as at first. But what is to be understood
by duplicate proportion has been already explained[96].
The third supposition is, that the resistance increases
partly in the single proportion of the velocity, and partly in
the duplicate proportion thereof.

4. In all these suppositions, bodies are considered under
two respects, either as moving, and opposing themselves
against the fluid by that power alone, which is essential to
them, of resisting to the change of their state from rest to
motion, or from motion to rest, which we have above called
their power of inactivity; or else, as descending or ascending,
and so having the power of gravity combined with
that other power. Thus our author has shewn in all those
three suppositions, in what manner bodies are resisted in an
uniform fluid, when they move with the aforesaid progressive
motion[97]; and what the resistance is, when they ascend or
descend perpendicularly[98]. And if a body ascend or descend
obliquely, and the resistance be singly proportional to the velocity,
it is shewn how the body is resisted in a fluid of an uniform
density, and what line it will describe[99], which is determined
by the measurement of the hyperbola, and appears
to be no other than that line, first considered in particular
by Dr. Barrow[100], which is now commonly known
by the name of the logarithmical curve. In the supposition
that the resistance increases in the duplicate proportion
of the velocity, our author has not given us the line
which would be described in an uniform fluid; but has instead
thereof discussed a problem, which is in some sort the
reverse; to find the density of the fluid at all altitudes, by
which any given curve line may be described; which problem
is so treated by him, as to be applicable to any kind of
resistance whatever[101]. But here not unmindful of practice,
he shews that a body in a fluid of uniform density, like the
air, will describe a line, which approaches towards an hyperbola;
that is, its motion will be nearer to that curve line
than to the parabola. And consequent upon this remark, he
shews how to determine this hyperbola by experiment, and
briefly resolves the chief of those problems relating to projectiles,
which are in use in the art of gunnery, in this curve[102];
as Torricelli and others have done in the parabola[103],
whose inventions have been explained at large above[104].

5. Our author has also handled distinctly that particular
sort of motion, which is described by pendulums[105]; and
has likewise considered some few cases of bodies moving in
resisting fluids round a center, to which they are impelled by
a centripetal force, in order to give an idea of those kinds of
motions[106].

6. The treating of the resistance of pendulums has given
him an opportunity of inserting into another part of
his work some speculations upon the motions of them without
resistance, which have a very peculiar elegance; where
in he treats of them as moved by a gravitation acting in
the law, which he shews to belong to the earth below its
surface[107]; performing in this kind of gravitation, where the
force is proportional to the distance from the center, all that
Huygens had before done in the common supposition of
its being uniform, and acting in parallel lines[108].



7. Huygens at the end of his treatise of the cause of
gravity[109] informs us, that he likewise had carried his speculations
on the first of these suppositions, of the resistance in
fluids being proportional to the velocity of the body, as far as
our author.  But finding by experiment that the second was
more conformable to nature, he afterwards made some progress
in that, till he was stopt, by not being able to execute to his
wish what related to the perpendicular descent of bodies; not
observing that the measurement of the curve line, he made
use of to explain it by, depended on the hyperbola. Which
oversight may well be pardoned in that great man, considering
that our author had not been pleased at that time to
communicate to the publick his admirable discourse of the
quadrature or measurement of curve lines, with which he
has since obliged the world: for without the use of that
treatise, it is I think no injury even to our author’s unparalleled
abilities to believe, it would not have been easy for
himself to have succeeded so happily in this and many other
parts of his writings.

8. What Huygens found by experiment, that bodies
were in reality resisted in the duplicate proportion of their velocity,
agrees with the reasoning of our author[110], who distinguishes
the resistance, which fluids give to bodies by the tenacity
of their parts, and the friction between them and the body,
from that, which arises from the power of inactivity, with
which the constituent particles of fluids are endued like all
other portions of matter, by which power the particles of fluids
like other bodies make resistance against being put into motion.

9. The resistance, which arises from the friction of the
body against the parts of the fluid, must be very inconsiderable;
and the resistance, which follows from the tenacity of
the parts of fluids, is not usually very great, and does not
depend much upon the velocity of the body in the fluid;
for as the parts of the fluid adhere together with a certain
degree of force, the resistance, which the body receives from
thence, cannot much depend upon the velocity, with which
the body moves; but like the power of gravity, its effect must
be proportional to the time of its acting. This the reader
may find farther explained by Sir Isaac Newton himself
in the postscript to a discourse published by me in the philosophical
transactions, No 371. The principal resistance,
which most fluids give to bodies, arises from the power of
inactivity in the parts of the fluids, and this depends upon the
velocity, with which the body moves, on a double account.
In the first place, the quantity of the fluid moved out of
place by the moving body in any determinate space of time
is proportional to the velocity, wherewith the body moves;
and in the next place, the velocity with which each particle of
the fluid is moved, will also be proportional to the velocity of
the body: therefore since the resistance, which any body makes
against being put into motion, is proportional both to the quantity
of matter moved and the velocity it is moved with; the
resistance, which a fluid gives on this account, will be doubly increased
with the increase of the velocity in the moving body;
that is, the resistance will be in a two-fold or duplicate proportion
of the velocity, wherewith the body moves through the
fluid.

10. Farther it is most manifest, that this latter kind
of resistance increasing with the increase of velocity, even
in a greater degree than the velocity it self increases, the
swifter the body moves, the less proportion the other species
of resistance will bear to this: nay that this part of the resistance
may be so much augmented by a due increase of velocity,
till the former resistances shall bear a less proportion to
this, than any that might be assigned.  And indeed experience
shews, that no other resistance, than what arises from
the power of inactivity in the parts of the fluid, is of moment,
when the body moves with any considerable swiftness.

11. There is besides these yet another species of resistance,
found only in such fluids, as, like our air, are elastic.
Elasticity belongs to no fluid known to us beside the air. By
this property any quantity of air may be contracted into a
less space by a forcible pressure, and as soon as the compressing
power is removed, it will spring out again to its
former dimensions. The air we breath is held to its present
density by the weight of the air above us.  And as this incumbent
weight, by the motion of the winds, or other causes,
is frequently varied (which appears by the barometer;)
so when this weight is greatest, we breath a more dense air
than at other times. To what degree the air would expand
it self by its spring, if all pressure were removed, is not
known, nor yet into how narrow a compass it is capable
of being compressed. Mr. Boyle found it by experiment
capable both of expansion and compression to such a degree,
that he could cause a quantity of air to expand it self over a
space some hundred thousand times greater, than the space to
which he could confine the same quantity[111]. But I shall
treat more fully of this spring in the air hereafter[112]. I am
now only to consider what resistance to the motion of bodies
arises from it.

12. But before our author shews in what manner this
cause of resistance operates, he proposes a method, by which
fluids may be rendered elastic, demonstrating that if their
particles be provided with a power of repelling each other,
which shall exert it self with degrees of strength reciprocally
proportional to the distances between the centers of
the particles; that then such fluids will observe the same
rule in being compressed, as our air does, which is this, that
the space, into which it yields upon compression, is reciprocally
proportional to the compressing weight[113]. The term
reciprocally proportional has been explained above[114]. And if
the centrifugal force of the particles acted by other laws, such
fluids would yield in a different manner to compression[115].

13. Whether the particles of the air be endued with
such a power, by which they can act upon each other out
of contact, our author does not determine, but leaves that
to future examination, and to be discussed by philosophers.
Only he takes occasion from hence to consider the resistance
in elastic fluids, under this notion; making remarks, as
he passes along, upon the differences, which will arise, if their
elasticity be derived from any other fountain[116]. And this, I
think, must be confessed to be done by him with great judgment;
for this is far the most reasonable account, which has
been given of this surprizing power, as must without doubt be
freely acknowledged by any one, who in the least considers
the insufficiency of all the other conjectures, which have
been framed; and also how little reason there is to deny to
bodies other powers, by which they may act upon each other
at a distance, as well as that of gravity; which we shall hereafter
shew to be a property universally belonging to all the
bodies of the universe, and to all their parts[117]. Nay we actually
find in the loadstone a very apparent repelling, as well as
an attractive power. But of this more in the conclusion of
this discourse.

14. By these steps our author leads the way to explain
the resistance, which the air and such like fluids will give
to bodies by their elasticity; which resistance he explains
thus. If the elastic power of the fluid were to be varied
so, as to be always in the duplicate proportion of the
velocity of the resisted body, it is shewn that then the
resistance derived from the elasticity, would increase in the
duplicate proportion of the velocity; in so much that the
whole resistance would be in that proportion, excepting only
that small part, which arises from the friction between the
body and the parts of the fluid. From whence it follows,
that because the elastic power of the same fluid does in
truth continue the same, if the velocity of the moving body be
diminished, the resistance from the elasticity, and therefore
the whole resistance, will decrease in a less proportion, than the
duplicate of the velocity; and if the velocity be increased, the
resistance from the elasticity will increase in a less proportion,
than the duplicate of the velocity, that is in a less proportion,
than the resistance made by the power of inactivity of the
parts of the fluid. And from this foundation is raised the proof
of a property of this resistance, given by the elasticity in common
with the others from the tenacity and friction of the
parts of the fluid; that the velocity may be increased, till this
resistance from the fluid’s elasticity shall bear no considerable
proportion to that, which is produced by the power of inactivity
thereof[118]. From whence our author draws this conclusion;
that the resistance of a body, which moves very swiftly
in an elastic fluid, is near the same, as if the fluid were
not elastic; provided the elasticity arises from the centrifugal
power of the parts of the medium, as before explained, especially
if the velocity be so great, that this centrifugal power
shall want time to exert it self[119]. But it is to be observed,
that in the proof of all this our author proceeds upon the supposition
of this centrifugal power in the parts of the fluid; but
if the elasticity be caused by the expansion of the parts in the
manner of wool compressed, and such like bodies, by which
the parts of the fluid will be in some measure entangled
together, and their motion be obstructed, the fluid will
be in a manner tenacious, and give a resistance upon that account
over and above what depends upon its elasticity only[120];
and the resistance derived from that cause is to be
judged of in the manner before set down.

15. It is now time to pass to the second part of this theory;
which is to assign the measure of resistance, according
to the proportion between the density of the body and the
density of the fluid. What is here to be understood by the
word density has been explained above[121]. For this purpose
as our author before considered two distinct cases of bodies
moving in mediums; one when they opposed themselves to
the fluid by their power of inactivity only, and another
when by ascending or descending their weight was combined
with that other power: so likewise, the fluids themselves
are to be regarded under a double capacity; either
as having their parts at rest, and disposed freely without restraint,
or as being compressed together by their own
weight, or any other cause.

16. In the first case, if the parts of the fluid be wholly
disingaged from one another, so that each particle is at liberty
to move all ways without any impediment, it is shewn,
that if a globe move in such a fluid, and the globe and particles
of the fluid are endued with perfect elasticity; so that
as the globe impinges upon the particles of it, they shall
bound off and separate themselves from the globe, with the
same velocity, with which the globe strikes upon them; then
the resistance, which the globe moving with any known velocity
suffers, is to be thus determined. From the velocity
of the globe, the time, wherein it would move over two
third parts of its own diameter with that velocity, will be
known. And such proportion as the density of the fluid bears
to the density of the globe, the same the resistance given to
the globe will bear to the force, which acting, like the power
of gravity, on the globe without intermission during the space
of time now mentioned, would generate in the globe the
same degree of motion, as that wherewith it moves in the
fluid[122]. But if neither the globe nor the particles of the
fluid be elastic, so that the particles, when the globe
strikes against them, do not rebound from it, then the
resistance will be but half so much[123]. Again, if the particles
of the fluid and the globe are imperfectly elastic, so
that the particles will spring from the globe with part only
of that velocity wherewith the globe impinges upon them;
then the resistance will be a mean between the two preceding
cases, approaching nearer to the first or second, according
as the elasticity is more or less[124].

17. The elasticity, which is here ascribed to the particles
of the fluid, is not that power of repelling one another,
when out of contact, by which, as has before been mentioned,
the whole fluid may be rendred elastic; but such
an elasticity only, as many solid bodies have of recovering
their figure, whenever any forcible change is made in it, by
the impulse of another body or otherwise. Which elasticity
has been explained above at large[125].

18. This is the case of discontinued fluids, where the body,
by pressing against their particles, drives them before
itself, while the space behind the body is left empty. But
in fluids which are compressed, so that the parts of them removed
out of place by the body resisted immediately retire
behind the body, and fill that space, which in the other case
is left vacant, the resistance is still less; for a globe in such a
fluid which shall be free from all elasticity, will be resisted
but half as much as the least resistance in the former case[126].
But by elasticity I now mean that power, which renders the
whole fluid so; of which if the compressed fluid be possessed,
in the manner of the air, then the resistance will be greater
than by the foregoing rule; for the fluid being capable in some
degree of condensation, it will resemble so far the case of uncompressed
fluids[127]. But, as has been before related, this difference
is most considerable in slow motions.

19. In the next place our author is particular in determining
the degrees of resistance accompanying bodies of
different figures; which is the last of the three heads, we
divided the whole discourse of resistance into. And in this
disquisition he finds a very surprizing and unthought of difference,
between free and compressed fluids. He proves,
that in the former kind, a globe suffers but half the resistance,
which the cylinder, that circumscribes the globe, will
do, if it move in the direction of its axis[128]. But in the latter
he proves, that the globe and cylinder are resisted alike[129].
And in general, that let the shape of bodies be
ever so different, yet if the greatest sections of the bodies
perpendicular to the axis of their motion be equal, the
bodies will be resisted equally[130].

20. Pursuant to the difference found between the resistance
of the globe and cylinder in rare and uncompressed
fluids, our author gives us the result of some other inquiries
of the same nature. Thus of all the frustums of a cone,
that can be described upon the same base and with the same
altitude, he shews how to find that, which of all others
will be the least resisted, when moving in the direction of
its axis[131]. And from hence he draws an easy method of altering
the figure of any spheroidical solid, so that its capacity
may be enlarged, and yet the resistance of it diminished[132]:
a note which he thinks may not be useless to ship-wrights.
He concludes with determining the solid, which
will be resisted the least that is possible, in these discontinued
fluids[133].



21. That I may here be understood by readers unacquainted
with mathematical terms, I shall explain what I
mean by a frustum of a cone, and a spheroidical solid. A
cone has been defined above. A frustum is what remains,
when part of the cone next the vertex is cut away by a section
parallel to the base of the cone, as in fig. 86. A spheroid
is produced from an ellipsis, as a sphere or globe is made
from a circle. If a circle turn round on its diameter, it describes
by its motion a sphere; so if an ellipsis (which figure
has been defined above, and will be more fully explained
hereafter[134]) be turned round either upon the longest or
shortest line, that can be drawn through the middle of it,
there will be described a kind of oblong or flat sphere, as
in fig. 87. Both these figures are called spheroids, and any
solid resembling these I here call spheroidical.

22. If it should be asked, how the method of altering
spheroidical bodies, here mentioned, can contribute to the
facilitating a ship’s motion, when I just above affirmed,
that the figure of bodies, which move in a compressed
fluid not elastic, has no relation to the augmentation or diminution
of the resistance; the reply is, that what was
there spoken relates to bodies deep immerged into such fluids,
but not of those, which swim upon the surface of them;
for in this latter case the fluid, by the appulse of the anterior
parts of the body, is raised above the level of the
surface, and behind the body is sunk somewhat below; so
that by this inequality in the superficies of the fluid, that
part of it, which at the head of the body is higher than
the fluid behind, will resist in some measure after the
manner of discontinued fluids[135], analogous to what was before
observed to happen in the air through its elasticity,
though the body be surrounded on every side by it[136]. And
as far as the power of these causes extends, the figure of the
moving body affects its resistance; for it is evident, that the
figure, which presses least directly against the parts of the fluid,
and so raises least the surface of a fluid not elastic, and least
compresses one that is elastic, will be least resisted.

23. The way of collecting the difference of the resistance
in rare fluids, which arises from the diversity of figure, is
by considering the different effect of the particles of the fluid
upon the body moving against them, according to the different
obliquity of the several parts of the body upon which
they respectively strike; as it is known, that any body impinging
against a plane obliquely, strikes with a less force,
than if it fell upon it perpendicularly; and the greater the
obliquity is, the weaker is the force. And it is the same
thing, if the body be at rest, and the plane move against it[137].

24. That there is no connexion between the figure
of a body and its resistance in compressed fluids, is proved
thus. Suppose A B C D (in fig. 88.) to be a canal, having such a
fluid, water for instance, running through it with an equable
velocity; and let any body E, by being placed in the axis
of the canal, hinder the passage of the water. It is evident,
that the figure of the fore part of this body will
have little influence in obstructing the water’s motion, but
the whole impediment will arise from the space taken up
by the body, by which it diminishes the bore of the canal,
and straightens the passage of the water[138]. But proportional
to the obstruction of the water’s motion, will be
the force of the water upon the body E[139]. Now suppose
both orifices of the canal to be closed, and the water in it
to remain at rest; the body E to move, so that the parts
of the water may pass by it with the same degree of velocity,
as they did before; it is beyond contradiction, that the pressure
of the water upon the body, that is, the resistance
it gives to its motion, will remain the same; and therefore
will have little connexion with the figure of the body[140].

25. By a method of reasoning drawn from the same fountain
is determined the measure of resistance these compressed
fluids give to bodies, in reference to the proportion between
the density of the body and that of the fluid. This shall be
explained particularly in my comment on Sir Is. Newton’s
mathematical principles of natural philosophy; but is not a
proper subject to be insisted on farther in this place.

26. We have now gone through all the parts of this
theory. There remains nothing more, but in few words to
mention the experiments, which our author has made, both
with bodies falling perpendicularly through water, and the
air[141], and with pendulums[142]: all which agree with the theory.
In the case of falling bodies, the times of their fall determined
by the theory come out the same, as by observation, to a
surprizing exactness; in the pendulums, the rod, by which
the ball of the pendulum hangs, suffers resistance as well as
the ball, and the motion of the ball being reciprocal, it communicates
such a motion to the fluid, as increases the resistance,
but the deviation from the theory is no more, than
what may reasonably follow from these causes.

27. By this theory of the resistance of fluids, and these experiments,
our author decides the question so long agitated
among natural philosophers, whether all space is absolutely
full of matter. The Aristotelians and Cartesians both assert
this plenitude; the Atomists have maintained the contrary.
Our author has chose to determine this question by his theory
of resistance, as shall be explained in the following chapter.
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BOOK II.

Concerning the

SYSTEM of the WORLD.



Chap. I.

That the Planets move in a space empty of
all sensible matter.
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I HAVE now gone through the
first part of my design, and have explained,
as far as the nature of my
undertaking would permit, what
Sir Isaac Newton has delivered
in general concerning the motion
of bodies. It follows now to speak
of the discoveries, he has made in the system of the world;
and to shew from him what cause keeps the heavenly bodies
in their courses. But it will be necessary for the use of
such, as are not skilled in astronomy, to premise a brief description
of the planetary system.

2. This system is disposed in the following manner. In
the middle is placed the sun. About him six globes continually
roll. These are the primary planets; that which
is nearest to the sun is called Mercury, the next Venus,
next to this is our earth, the next beyond is Mars, after
him Jupiter, and the outermost of all Saturn. Besides these
there are discovered in this system ten other bodies, which
move about some of these primary planets in the same
manner, as they move round the sun.  These are called
secondary planets.  The most conspicuous of them is the
moon, which moves round our earth; four bodies move in
like manner round Jupiter; and five round Saturn. Those
which move about Jupiter and Saturn, are usually called
satellites; and cannot any of them be seen without a telescope.
It is not impossible, but there may be more secondary
planets, beside these; though our instruments
have not yet discovered any other.  This disposition of
the planetary or solar system is represented in fig. 89.

3. The same planet is not always equally distant from
the sun. But the middle distance of Mercury is between
⅕ and ⅖ of the distance of the earth from the sun; Venus
is distant from the sun almost ¾ of the distance of the
earth; the middle distance of Mars is something more than
half as much again, as the distance of the earth; Jupiter’s
middle distance exceeds five times the distance of the
earth, by between ⅕ and 1/6 part of this distance; Saturn’s
middle distance is scarce more than 9½ times the distance
between the earth and sun; but the middle distance between
the earth and sun is about 217⅛ times the sun’s semidiameter.
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4. All these planets move one way, from west to
east; and of the primary planets the most remote is longest
in finishing its course round the sun. The period
of Saturn falls short only sixteen days of 29 years and
a half. The period of Jupiter is twelve years wanting about
50 days. The period of Mars falls short of two years
by about 43 days. The revolution of the earth constitutes
the year. Venus performs her period in about 224½ days,
and Mercury in about 88 days.

5. The course of each planet lies throughout in one
plane or flat surface, in which the sun is placed; but they do
not all move in the same plane, though the different planes,
in which they move, cross each other in very small angles.
They all cross each other in lines, which pass through the
sun; because the sun lies in the plane of each orbit. This
inclination of the several orbits to each other is represented in
fig. 90. The line, in which the plane of any orbit crosses
the plane of the earth’s motion, is called the line of the nodes
of that orbit.



6. Each planet moves round the sun in the line, which
we have mentioned above[143] under the name of ellipsis; which
I shall here shew more particularly how to describe. I have
there said how it is produced in the cone. I shall now shew
how to form it upon a plane. Fix upon any plane two pins,
as at A and B in fig. 91. To these tye a string A C B of any
length. Then apply a third pin D so to the string, as to hold
it strained; and in that manner carrying this pin about, the
point of it will describe an ellipsis. If through the points A,
B the straight line E A B F be drawn, to be terminated at
the ellipsis in the points E and F, this is the longest line
of any, that can be drawn within the figure, and is called
the greater axis of the ellipsis. The line G H, drawn
perpendicular to this axis E F, so as to pass through the
middle of it, is called the lesser axis. The two points A
and B are called focus’s. Now each planet moves round
the sun in a line of this kind, so that the sun is found in
one focus. Suppose A to be the place of the sun. Then E
is the point, wherein the planet will be nearest of all to the
sun, and at F it will be most remote. The point E is called
the perihelion of the planet, and F the aphelion. In G
and H the planet is said to be in its middle or mean distance;
because the distance A G or A H is truly the middle between
A E the least, and A F the greatest distance. In fig. 92.
is represented how the greater axis of each orbit is situated in
respect of the rest. The proportion between the greatest and
least distances of the planet from the sun is very different
in the different planets.
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In Saturn the proportion of the
greatest distance to the least is something less, than the proportion
of 9 to 8, but much nearer to this, than to the proportion
of 10 to 9. In Jupiter this proportion is a little greater,
than that of 11 to 10. In Mars it exceeds the proportion of
6 to 5. In the earth it is about the proportion of 30 to 29.
In Venus it is near to that of 70 to 69. And in Mercury it
comes not a great deal short of the proportion of 3 to 2.
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7. Each of these planets so moves through its ellipsis, that
the line drawn from the sun to the planet, by accompanying
the planet in its motion, will describe about the sun equal spaces
in equal times, after the manner spoke of in the chapter of
centripetal forces[144]. There is also a certain relation between
the greater axis’s of these ellipsis’s, and the times, in which
the planets perform their revolutions through them.  Which
relation may be expressed thus. Let the period
of one planet be denoted by the letter A, the
greater axis of its orbit by D; let the period
of another planet be denoted by B, and the
greater axis of this planet’s orbit by E.  Then
if C be taken to bear the same proportion to B,
as B bears to A; likewise if F be taken to bear the same proportion
to E, as E bears to D; and G taken to bear the same
proportion likewise to F, as E bears to D; then A shall bear
the same proportion to C, as D bears to G.

8. The secondary planets move round their respective
primary, much in the same manner as the primary do round
the sun. But the motions of these shall be more fully explained
hereafter[145]. And there is, besides the planets, another
sort of bodies, which in all probability move round the sun;
I mean the comets. The farther description of which bodies
I also leave to the place, where they are to be particularly
treated on[146].

9. Far without this system the fixed stars are placed.
These are all so remote from us, that we seem almost incapable
of contriving any means to estimate their distance. Their
number is exceeding great. Besides two or three thousand,
which we see with the naked eye, telescopes open to our view
vast numbers; and the farther improved these instruments
are, we still discover more and more. Without doubt these
are luminous globes, like our sun, and ranged through the
wide extent of space; each of which, it is to be supposed,
perform the same office, as our sun, affording light and heat
to certain planets moving about them. But these conjectures
are not to be pursued in this place.

10. I shall therefore now proceed to the particular design
of this chapter, and shew, that there is no sensible matter
lodged in the space where the planets move.

11. That they suffer no sensible resistance from any
such matter, is evident from the agreement between the observations
of astronomers in different ages, with regard to the
time, in which the planets have been found to perform their
periods. But it was the opinion of Des Cartes[147], that the
planets might be kept in their courses by the means of a fluid
matter, which continually circulating round should carry
the planets along with it.  There is one appearance that
may seem to favour this opinion; which is, that the sun turns
round its own axis the same way, as the planets move.  The
earth also turns round its axis the same way, as the moon
moves round the earth. And the planet Jupiter turns upon
its axis the same way, as his satellites revolve round him. It
might therefore be supposed, that if the whole planetary region
were filled with a fluid matter, the sun, by turning round on
its own axis, might communicate motion first to that part of
the fluid, which was contiguous, and by degrees propagate
the like motion to the parts more remote. After the same
manner the earth might communicate motion to this fluid, to
a distance sufficient to carry round the moon, and Jupiter communicate
the like to the distance of its satellites.  Sir Isaac
Newton has particularly examined what might be the result
of such a motion as this[148]; and he finds, that the velocities,
with which the parts of this fluid will move in different distances
from the center of the motion, will not agree with the
motion observed in different planets: for instance, that the
time of one intire circulation of the fluid, wherein Jupiter
should swim, would bear a greater proportion to the time of
one intire circulation of the fluid, where the earth is; than the
period of Jupiter bears to the period of the earth. But he
also proves[149], that the planet cannot circulate in such a fluid,
so as to keep long in the same course, unless the planet and
the contiguous fluid are of the same density, and the planet
be carried along with the same degree of motion, as the fluid.
There is also another remark made upon this motion by our
author; which is, that some vivifying force will be continually
necessary at the center of the motion[150]. The sun in particular,
by communicating motion to the ambient fluid, will
lose from it self as much motion, as it imparts to the fluid;
unless some acting principle reside in the sun to renew its
motion continually. If the fluid be infinite, this gradual loss
of motion would continue till the whole should stop[151]; and
if the fluid were limited, this loss of motion would continue,
till there would remain no swifter a revolution in the sun,
than in the utmost part of the fluid; so that the whole
would turn together about the axis of the sun, like one solid
globe[152].

12. It is farther to be observed, that as the planets do not
move in perfect circles round the sun; there is a greater distance
between their orbits in some places, than in others. For
instance, the distance between the orbit of Mars and Venus is
near half as great again in one part of their orbits, as in the
opposite place. Now here the fluid, in which the earth
should swim, must move with a less rapid motion, where
there is this greater interval between the contiguous orbits; but
on the contrary, where the space is straitest, the earth moves
more slowly, than where it is widest[153].



13. Farther, if this our globe of earth swam in a fluid
of equal density with the earth it self, that is, in a fluid more
dense than water; all bodies put in motion here upon the
earth’s surface must suffer a great resistance from it; where
as, by Sir Isaac Newton’s experiments mentioned in the
preceding chapter, bodies, that fell perpendicularly down
through the air, felt about 1/860 part only of the resistance,
which bodies suffered that fell in like manner through water.

14. Sir Isaac Newton applies these experiments yet
farther, and examines by them the general question concerning
the absolute plenitude of space. According to the Aristotelians,
all space was full without any the least vacuities whatever.
DesCartes embraced the same opinion, and therefore
supposed a subtile fluid matter, which should pervade all bodies,
and adequately fill up their pores. The Atomical philosophers,
who suppose all bodies both fluid and solid to be composed
of very minute but solid atoms, assert that no fluid, how
subtile soever the particles or atoms whereof it is composed
should be, can ever cause an absolute plenitude; because it
is impossible that any body can pass through the fluid without
putting the particles of it into such a motion, as to separate
them, at least in part, from one another, and so perpetually
to cause small vacuities; by which these Atomists endeavour
to prove, that a vacuum, or some space empty of all
matter, is absolutely necessary to be in nature. Sir Isaac
Newton objects against the filling of space with such a subtile
fluid, that all bodies in motion must be unmeasurably resisted
by a fluid so dense, as absolutely to fill up all the space,
through which it is spread. And lest it should be thought,
that this objection might be evaded by ascribing to this fluid
such very minute and smooth parts, as might remove all adhesion
or friction between them, whereby all resistance
would be lost, which this fluid might otherwise give to bodies
moving in it; Sir Isaac Newton proves, in the
manner above related, that fluids resist from the power of
inactivity of their particles; and that water and the air resist
almost entirely on this account: so that in this subtile
fluid, however minute and lubricated the particles, which
compose it, might be; yet if the whole fluid was as dense as
water, it would resist very near as much as water does; and
whereas such a fluid, whose parts are absolutely close together
without any intervening spaces, must be a great deal
more dense than water, it must resist more than water in
proportion to its greater density; unless we will suppose the
matter, of which this fluid is composed, not to be endued
with the same degree of inactivity as other matter. But if
you deprive any substance of the property so universally belonging
to all other matter, without impropriety of speech
it can scarce be called by this name.

15. Sir Isaac Newton made also an experiment to try in
particular, whether the internal parts of bodies suffered any resistance.
And the result did indeed appear to favour some small
degree of resistance; but so very little, as to leave it doubtful,
whether the effect did not arise from some other latent cause[154].









Chap. II.

Concerning the cause, which keeps in motion
the primary planets.

SINCE the planets move in a void space and are free
from resistance; they, like all other bodies, when
once in motion, would move on in a straight line without
end, if left to themselves. And it is now to be explained
what kind of action upon them carries them round the sun.
Here I shall treat of the primary planets only, and discourse
of the secondary apart in the next chapter. It has been
just now declared, that these primary planets move so about
the sun, that a line extended from the sun to the planet, will,
by accompanying the planet in its motion, pass over equal spaces
in equal portions of time[155]. And this one property in the
motion of the planets proves, that they are continually acted
on by a power directed perpetually to the sun as a center. This
therefore is one property of the cause, which keeps the
planets in their courses, that it is a centripetal power, whose
center is the sun.

2. Again, in the chapter upon centripetal forces[156] it
was observ’d, that if the strength of the centripetal power
was suitably accommodated every where to the motion of
any body round a center, the body might be carried in
any bent line whatever, whose concavity should be every
where turned towards the center of the force. It was farther
remarked, that the strength of the centripetal force,
in each place, was to be collected from the nature of the
line, wherein the body moved[157]. Now since each planet
moves in an ellipsis, and the sun is placed in one focus;
Sir Isaac Newton deduces from hence, that the strength
of this power is reciprocally in the duplicate proportion of the
distance from the sun. This is deduced from the properties,
which the geometers have discovered in the ellipsis. The process
of the reasoning is not proper to be enlarged upon here;
but I shall endeavour to explain what is meant by the reciprocal
duplicate proportion. Each of the terms reciprocal proportion,
and duplicate proportion, has been already defined[158].
Their sense when thus united is as follows. Suppose the planet
moved in the orbit A B C (in fig. 93.) about the sun in S.
Then, when it is said, that the centripetal power, which acts on
the planet in A, bears to the power acting on it in B a proportion,
which is the reciprocal of the duplicate proportion of the
distance S A to the distance S B; it is meant that the power
in A bears to the power in B the duplicate of the proportion
of the distance S B to the distance S A. The reciprocal duplicate
proportion may be explained also by numbers as follows.
Suppose several distances to bear to each other proportions
expressed by the numbers 1, 2, 3, 4, 5; that is, let the
second distance be double the first, the third be three times,
the fourth four times, and the fifth five times as great as the
first. Multiply each of these numbers by it self, and 1 multiplied
by 1 produces still 1, 2 multiplied by 2 produces 4, 3
by 3 makes 9, 4 by 4 makes 16, and 5 by 5 gives 25. This
being done, the fractions ¼, 1/9, 1/16, 1/25, will respectively express
the proportion, which the centripetal power in each of the
following distances bears to the power at the first distance: for
in the second distance, which is double the first, the centripetal
power will be one fourth part only of the power at the
first distance; at the third distance the power will be one
ninth part only of the first power; at the fourth distance,
the power will be but one sixteenth part of the first; and at
the fifth distance, one twenty fifth part of the first power.

3. Thus is found the proportion, in which this centripetal
power decreases, as the distance from the sun increases, within
the compass of one planet’s motion. How it comes to pass,
that the planet can be carried about the sun by this centripetal
power in a continual round, sometimes rising from the sun,
then descending again as low, and from thence be carried
up again as far remote as before, alternately rising and falling
without end; appears from what has been written above concerning
centripetal forces: for the orbits of the planets resemble
in shape the curve line proposed in § 17 of the chapter
on these forces[159].

4. But farther, in order to know whether this centripetal
force extends in the same proportion throughout, and consequently
whether all the planets are influenced by the very same
power, our author proceeds thus. He inquires what relation
there ought to be between the periods of the different planets,
provided they were acted upon by the same power decreasing
throughout in the forementioned proportion; and he finds,
that the period of each in this case would have that very relation
to the greater axis of its orbit, as I have declared above[160]
to be found in the planets by the observations of astronomers.
And this puts it beyond question, that the different planets are
pressed towards the sun, in the same proportion to their distances,
as one planet is in its several distances. And thence
in the last place it is justly concluded, that there is such a
power acting towards the sun in the foresaid proportion at all
distances from it.

5. This power, when referred to the planets, our author
calls centripetal, when to the sun attractive; he gives it likewise
the name of gravity, because he finds it to be of the same
nature with that power of gravity, which is observed in our
earth, as will appear hereafter[161]. By all these names he designs
only to signify a power endued with the properties before
mentioned; but by no means would he have it understood, as
if these names referred any way to the cause of it. In particular
in one place where he uses the name of attraction, he cautions
us expressly against implying any thing but a power directing
a body to a center without any reference to the cause
of it, whether residing in that center, or arising from any
external impulse[162].



6. But now, in these demonstrations some very minute inequalities
in the motion of the planets are neglected; which is
done with a great deal of judgment; for whatever be their
cause, the effects are very inconsiderable, they being so exceeding
small, that some astronomers have thought fit wholly to pass
them by[163]. However the excellency of this philosophy, when
in the hands of so great a geometer as our author, is such, that
it is able to trace the least variations of things up to their causes.
The only inequalities, which have been observed common to
all the planets, are the motion of the aphelion and the nodes.
The transverse axis of each orbit does not always remain fixed,
but moves about the sun with a very slow progressive
motion: nor do the planets keep constantly the same plane,
but change them, and the lines in which those planes intersect
each other by insensible degrees. The first of these
inequalities, which is the motion of the aphelion, may be accounted
for, by supposing the gravitation of the planets towards
the sun to differ a little from the forementioned reciprocal
duplicate proportion of the distances; but the second,
which is the motion of the nodes, cannot be accounted
for by any power directed towards the sun; for no such
can give the planet any lateral impulse to divert it from the
plane of its motion into any new plane, but of necessity must
be derived from some other center. Where that power is
lodged, remains to be discovered. Now it is proved, as
shall be explained in the following chapter, that the three
primary planets Saturn, Jupiter, and the earth, which have
satellites revolving about them, are endued with a power of
causing bodies, in particular those satellites, to gravitate towards
them with a force, which is reciprocally in the duplicate
proportion of their distances; and the planets are in all respects,
in which they come under our examination, so similar
and alike, that there is no reason to question, but they have
all the same property. Though it be sufficient for the present
purpose to have it proved of Jupiter and Saturn only; for
these planets contain much greater quantities of matter than
the rest, and proportionally exceed the others in power[164]. But
the influence of these two planets being allowed, it is evident
how the planets come to shift continually their planes:
for each of the planets moving in a different plane, the
action of Jupiter and Saturn upon the rest will be oblique to
the planes of their motion; and therefore will gradually draw
them into new ones. The same action of these two planets upon
the rest will cause likewise a progressive motion of the
aphelion; so that there will be no necessity of having recourse
to the other cause for this motion, which was before hinted
at[165]; viz, the gravitation of the planets towards the sun differing
from the exact reciprocal duplicate proportion of the distances.
And in the last place, the action of Jupiter and Saturn
upon each other will produce in their motions the same inequalities,
as their joint action produces in the rest. All this
is effected in the same manner, as the sun produces the same
kind of inequalities and many others in the motion of the
moon and the other secondary planets; and therefore will be
best apprehended by what shall be said in the next chapter.
Those other irregularities in the motion of the secondary
planets have place likewise here; but are too minute to be
observable: because they are produced and rectified alternately,
for the most part in the time of a single revolution;
whereas the motion of the aphelion and nodes, which continually
increase, become sensible in a long series of years. Yet
some of these other inequalities are discernible in Jupiter and
Saturn, in Saturn chiefly; for when Jupiter, who moves faster
than Saturn, approaches near to a conjunction with him, his
action upon Saturn will a little retard the motion of that planet,
and by the reciprocal action of Saturn he will himself be
accelerated. After conjunction, Jupiter will again accelerate
Saturn, and be likewise retarded in the same degree, as before
the first was retarded and the latter accelerated.  Whatever
inequalities besides are produced in the motion of Saturn by
the action of Jupiter upon that planet, will be sufficiently rectified,
by placing the focus of Saturn’s ellipsis, which should
otherwise be in the sun, in the common center of gravity of
the sun and Jupiter.  And all the inequalities in the motion
of Jupiter, caused by Saturn’s action upon him, are much
less considerable than the irregularities of Saturn’s motion[166].

7. This one principle therefore of the planets having a
power, as well as the sun, to cause bodies to gravitate towards
them, which is proved by the motion of the secondary planets
to obtain in fact, explains all the irregularities relating to
the planets ever observed by astronomers.



8. Sir Isaac Newton after this proceeds to make an
improvement in astronomy by applying this theory to the farther
correction of their motions. For as we have here observed
the planets to possess a principle of gravitation, as well as
the sun; so it will be explained at large hereafter, that the
third law of motion, which makes action and reaction equal,
is to be applied in this case[167]; and that the sun does not only
attract each planet, but is it self also attracted by them; the
force, wherewith the planet is acted on, bearing to the force,
wherewith the sun it self is acted on at the same time, the
proportion, which the quantity of matter in the sun bears to
the quantity of matter in the planet. From the action between
the sun and planet being thus mutual Sir Isaac
Newton proves that the sun and planet will describe about
their common center of gravity similar ellipsis’s; and then that
the transverse axis of the ellipsis described thus about the moveable
sun, will bear to the transverse axis of the ellipsis, which
would be described about the sun at rest in the same time, the
same proportion as the quantity of solid matter in the sun and
planet together bears to the first of two mean proportionals between
this quantity and the quantity of matter in the sun only[168].

9. Above, where I shewed how to find a cube, that
should bear any proportion to another cube[169], the lines F T
and T S are two mean proportionals between E F and F G;
and counting from E F, F T is called the first, and F S the second
of those means. In numbers these mean proportionals
are thus found.
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Suppose A and B two numbers, and it be
required to find C the first, and D the second of
the two mean proportionals between them. First
multiply A by it self, and the product multiply
by B; then C will be the number which in arithmetic
is called the cubic root of this last product; that is,
the number C being multiplied by it self, and the product
again multiplied by the same number C, will produce the
product above mentioned. In like manner D is the cubic
root of the product of B multiplied by it self, and the produce
of that multiplication multiplied again by A.

10. It will be asked, perhaps, how this correction can be
admitted, when the cause of the motions of the planets was
before found by supposing the sun the center of the power,
which acted upon them: for according to the present correction
this power appears rather to be directed to their common
center of gravity. But whereas the sun was at first concluded
to be the center, to which the power acting on the planets
was directed, because the spaces described round the sun in
equal times were found to be equal; so Sir Isaac Newton
proves, that if the sun and planet move round their common
center of gravity, yet to an eye placed in the planet, the spaces,
which will appear to be described about the sun, will have
the same relation to the times of their description, as the real
spaces would have, if the sun were at rest[170]. I farther asserted,
that, supposing the planets to move round the sun at rest,
and to be attracted by a power, which every where should
act with degrees of strength reciprocally in the duplicate
proportion of the distances; then the periods of the planets
must observe the same relation to their distances, as astronomers
find them to do. But here it must not be supposed, that
the observations of astronomers absolutely agree without any
the least difference; and the present correction will not cause
a deviation from any one astronomer’s observations, so much
as they differ from one another. For in Jupiter, where this
correction is greatest, it hardly amounts to the 3000th part
of the whole axis.

11. Upon this head I think it not improper to mention
a reflection made by our excellent author upon these small inequalities
in the planets motions; which contains under it a
very strong philosophical argument against the eternity of the
world. It is this, that these inequalities must continually increase
by slow degrees, till they render at length the present
frame of nature unfit for the purposes, it now serves[171]. And
a more convincing proof cannot be desired against the present
constitution’s having existed from eternity than this,
that a certain period of years will bring it to an end. I am
aware this thought of our author has been represented even
as impious, and as no less than casting a reflection upon
the wisdom of the author of nature, for framing a perishable
work. But I think so bold an assertion ought to have
been made with singular caution. For if this remark
upon the increasing irregularities of the heavenly motions
be true in fact, as it really is, the imputation must return
upon the asserter, that this does detract from the divine
wisdom. Certainly we cannot pretend to know all the
omniscient Creator’s purposes in making this world, and
therefore cannot undertake to determine how long he designed
it should last. And it is sufficient, if it endure
the time intended by the author. The body of every animal
shews the unlimited wisdom of its author no less, nay
in many respects more, than the larger frame of nature;
and yet we see, they are all designed to last but a small
space of time.

12. There need nothing more be said of the primary planets;
the motions of the secondary shall be next considered.





Chap. III.

Of the motion of the MOON and the other
SECONDARY PLANETS.

THE excellency of this philosophy sufficiently appears
from its extending in the manner, which has been related,
to the minutest circumstances of the primary planets
motions; which nevertheless bears no proportion to the vast
success of it in the motions of the secondary; for it not only
accounts for all the irregularities, by which their motions were
known to be disturbed, but has discovered others so complicated,
that astronomers were never able to distinguish them, and
reduce them under proper heads; but these were only to be
found out from their causes, which this philosophy has brought
to light, and has shewn the dependence of these inequalities
upon such causes in so perfect a manner, that we not only learn
from thence in general, what those inequalities are, but are
able to compute the degree of them. Of this Sir Is. Newton
has given several specimens, and has moreover found means
to reduce the moon’s motion so completely to rule, that he
has framed a theory, from which the place of that planet
may at all times be computed, very nearly or altogether as exactly,
as the places of the primary planets themselves, which is
much beyond what the greatest astronomers could ever effect.

2. The first thing demonstrated of these secondary planets
is, that they are drawn towards their respective primary in the
same manner as the primary planets are attracted by the sun.
That each secondary planet is kept in its orbit by a power
pointed towards the center of the primary planet, about
which the secondary revolves; and that the power, by which
the secondaries of the same primary are influenced, bears the
same relation to the distance from the primary, as the power,
by which the primary planets are guided, does in regard to
the distance from the sun[172]. This is proved in the satellites of
Jupiter and Saturn, because they move in circles, as far as we
can observe, about their respective primary with an equable
course, the respective primary being the center of each orbit:
and by comparing the times, in which the different satellites
of the same primary perform their periods, they are
found to observe the same relation to the distances from their
primary, as the primary planets observe in respect of their
mean distances from the sun[173].  Here these bodies moving in
circles with an equable motion, each satellite passes over equal
parts of its orbit in equal portions of time; consequently
the line drawn from the center of the orbit, that is, from
the primary planet, to the satellite, will pass over equal spaces
along with the satellite in equal portions of time; which
proves the power, by which each satellite is held in its orbit,
to be pointed towards the primary as a center[174]. It is also manifest
that the centripetal power, which carries a body in a
circle concentrical with the power, acts upon the body at all
times with the same strength. But Sir Isaac Newton demonstrates
that, when bodies are carried in different circles by
centripetal powers directed to the centers of those circles, then,
the degrees of strength of those powers are to be compared by
considering the relation between the times, in which the bodies
perform their periods through those circles[175]; and in particular
he shews, that if the periodical times bear that relation,
which I have just now asserted the satellites of the same primary
to observe; then the centripetal powers are reciprocally
in the duplicate proportion of the semidiameters of the circles,
or in that proportion to the distances of the bodies from the
centers[176]. Hence it follows that in the planets Jupiter and
Saturn, the centripetal power in each decreases with the increase
of distance, in the same proportion as the centripetal
power appertaining to the sun decreases with the increase of
distance. I do not here mean that this proportion of the centripetal
powers holds between the power of Jupiter at any distance
compared with the power of Saturn at any other distance;
but only in the change of strength of the power belonging
to the same planet at different distances from him.
Moreover what is here discovered of the planets Jupiter and
Saturn by means of the different satellites, which revolve
round each of them, appears in the earth by the moon alone;
because she is found to move round the earth in an ellipsis after
the same manner as the primary planets do about the sun;
excepting only some small irregularities in her motion, the
cause of which will be particularly explained in what follows,
whereby it will appear, that they are no objection against
the earth’s acting on the moon in the same manner as the sun
acts on the primary planets; that is, as the other primary
planets Jupiter and Saturn act upon their satellites. Certainly
since these irregularities can be otherwise accounted for, we
ought not to depart from that rule of induction so necessary
in philosophy, that to like bodies like properties are to be attributed,
where no reason to the contrary appears. We cannot
therefore but ascribe to the earth the same kind of action
upon the moon, as the other primary planets Jupiter and Saturn
have upon their satellites; which is known to be very
exactly in the proportion assigned by the method of comparing
the periodical times and distances of all the satellites which
move about the same planet; this abundantly compensating
our not being near enough to observe the exact figure of
their orbits. For if the little deviation of the moon’s orbit
orbit from a true permanent ellipsis arose from the action of the
earth upon the moon not being in the exact reciprocal duplicate
proportion of the distance, were another moon to revolve
about the earth, the proportion between the periodical times of
this new moon, and the present, would discover the deviation
from the mentioned proportion much more manifestly.

3. By the number of satellites, which move round Jupiter
and Saturn, the power of each of these planets is measured in
a great diversity of distance; for the distance of the outermost
satellite in each of these planets exceeds several times the distance
of the innermost. In Jupiter the astronomers have usually
placed the innermost satellite at a distance from the center of
that planet equal to about 5⅔ of the semidiameters of Jupiter’s
body, and this satellite performs its revolution in about 1 day
18½ hours. The next satellite, which revolves round Jupiter in
about 3 days 13⅕ hours, they place at the distance from Jupiter
of about 9 of that planet’s semidiameters. To the third satellite,
which performs its period nearly in 7 days 3¾ hours,
they assign the distance of about 14⅖ semidiameters. But
the outermost satellite they remove to 25⅓ semidiameters, and
this satellite makes its period in about 16 days 16½ hours[177].
In Saturn there is still a greater diversity in the distance of the
several satellites. By the observations of the late Cassini, a
celebrated astronomer in France, who first discovered all these
satellites, except one known before, the innermost is distant
about 4½ of Saturn’s semidiameters from his center, and revolves
round in about 1 day 21⅓ hours. The next satellite
is distant about 5¾ semidiameters, and makes its period in about
2 days 17⅔ hours.  The third is removed to the distance
of about 8 semidiameters, and performs its revolution in
near 4 days 12½ hours. The fourth satellite discovered first
by the great Huygens, is near 18⅔ semidiameters, and
moves round Saturn in about 15 days 22⅔ hours. The outermost
is distant 56 semidiameters, and makes its revolution
in about 79 days 7⅘ hours[178].  Besides these satellites, there
belongs to the planet Saturn another body of a very singular
kind. This is a shining, broad, and flat ring, which encompasses
the planet round. The diameter of the outermost
verge of this ring is more than double the diameter of Saturn.
Huygens, who first described this ring, makes the whole
diameter thereof to bear to the diameter of Saturn the proportion
of 9 to 4. The late reverend Mr. Pound makes the
proportion something greater, viz. that of 7 to 3. The distances
of the satellites of this planet Saturn are compared by
Cassini to the diameter of the ring.  His numbers I have
reduced to those above, according to Mr. Pound’s proportion
between the diameters of Saturn and of his ring. As
this ring appears to adhere no where to Saturn, so the distance
of Saturn from the inner edge of the ring seems rather
greater than the breadth of the ring. The distances, which
have here been given, of the several satellites, both for Jupiter
and Saturn, may be more depended on in relation to the
proportion, which those belonging to the same primary planet
bear one to another, than in respect to the very numbers, that
have been here set down, by reason of the difficulty there is
in measuring to the greatest  exactness the diameters of the primary
planets; as will be explained hereafter, when we come
to treat of telescopes[179]. By the observations of the forementioned
Mr. Pound, in Jupiter the distance of the innermost
satellite should rather be about 6 semidiameters, of the second
9-½, of the third 15, and of the outermost 26⅔[180]; and in Saturn
the distance of the innermost satellite 4 semidiameters,
of the next 6¼, of the third 8¾, of the fourth 20⅓, and of the
fifth 59[181]. However the proportion between the distances
of the satellites in the same primary is the only thing necessary
to the point we are here upon.

4. But moreover the force, wherewith the earth acts in
different distances, is confirmed from the following consideration,
yet more expresly than by the preceding analogical
reasoning. It will appear, that if the power of the earth, by
which it retains the moon in her orbit, be supposed to act at all
distances between the earth and moon, according to the forementioned
rule; this power will be sufficient to produce upon
bodies, near the surface of the earth, all the effects ascribed
to the principle of gravity. This is discovered by the following
method. Let A (in fig. 94.) represent the earth,
B the moon, B C D the moon’s orbit, which differs little from
a circle, of which A is the center. If the moon in B were
left to it self to move with the velocity, it has in the point B, it
would leave the orbit, and proceed right forward in the line
B E, which touches the orbit in B. Suppose the moon would
upon this condition move from B to E in the space of one minute
of time. By the action of the earth upon the moon, whereby
it is retained in its orbit, the moon will really be found at the
end of this minute in the point F, from whence a straight line
drawn to A shall make the space B F A in the circle equal to the
triangular space B E A; so that the moon in the time wherein
it would have moved from B to E, if left to it self, has been
impelled towards the earth from E to F. And when the time
of the moon’s passing from B to F is small, as here it is only
one minute, the distance between E and F scarce differs from
the space, through which the moon would descend in the
same time, if it were to fall directly down from B toward A
without any other motion. A B the distance of the earth and
moon is about 60 of the earth’s semidiameters, and the moon
completes her revolution round the earth in about 27 days
7 hours and 43 minutes: therefore the space E F will here be
found by computation to be about 16⅛ feet. Consequently,
if the power, by which the moon is retained in its orbit, be
near the surface of the earth greater, than at the distance of
the moon in the duplicate proportion of that distance; the
number of feet, a body would descend near the surface of the
earth by the action of this power upon it in one minute of
time, would be equal to 16⅛ multiplied twice into the number
60, that is, equal to 58050. But how fast bodies fall near
the surface of the earth may be known by the pendulum[182]; and
by the exactest experiments they are found to descend the space
of 16⅛ feet in a second of time; and the spaces described by
falling bodies being in the duplicate proportion of the times
of their fall[183], the number of feet, a body would describe in its
fall near the surface of the earth in one minute of time, will
be equal to 16⅛ twice multiplied by 60, the same as would
be caused by the power which acts upon the moon.

5. In this computation the earth is supposed to be at
rest, whereas it would have been more exact to have supposed
it to move, as well as the moon, about their common
center of gravity; as will easily be understood, by what
has been said in the preceding chapter, where it was shewn,
that the sun is subjected to the like motion about the common
center of gravity of it self and the planets. The action
of the sun upon the moon, which is to be explain’d
in what follows, is likewise here neglected: and Sir Isaac
Newton shews, if you take in both these considerations,
the present computation will best agree to a somewhat greater
distance of the moon and earth, viz. to 60½ semidiameters
of the earth, which distance is more conformable to
astronomical observations.

6. These computations afford an additional proof, that
the action of the earth observes the same proportion to the
distance, which is here contended for. Before I said, it
was reasonable to conclude so by induction from the planets
Jupiter and Saturn; because they act in that manner.
But now the same thing will be evident by drawing no other
consequence from what is seen in those planets, than that the
power, by which the primary planets act on their secondary,
is extended from the primary through the whole interval between,
so that it would act in every part of the intermediate
space. In Jupiter and Saturn this power is so far from being
confined to a small extent of distance, that it not only reaches
to several satellites at very different distances, but also from
one planet to the other, nay even through the whole planetary
system[184]. Consequently there is no appearance of reason,
why this power should not act at all distances, even at the
very surfaces of these planets as well as farther off. But from
hence it follows, that the power, which retains the moon
in her orbit, is the same, as causes bodies near the surface of
the earth to gravitate. For since the power, by which the
earth acts on the moon, will cause bodies near the surface
of the earth to descend with all the velocity they are found
to do, it is certain no other power can act upon them
besides; because if it did, they must of necessity descend
swifter. Now from all this it is at length very evident,
that the power in the earth, which we call gravity, extends
up to the moon, and decreases in the duplicate proportion
of the increase of the distance from the earth.

7. This finishes the discoveries made in the action of
the primary planets upon their secondary. The next thing
to be shewn is, that the sun acts upon them likewise: for
this purpose it is to be observed, that if to the motion of the
satellite, whereby it would be carried round its primary at
rest, be superadded the same motion both in regard to
velocity and direction, as the primary it self has, it will
describe about the primary the same orbit, with as great
regularity, as if the primary was indeed at rest. The
cause of this is that law of motion, which makes a
body near the surface of the earth, when let fall, to
descend perpendicularly, though the earth be in so swift
a motion, that if the falling body did not partake of it,
its descent would be remarkably oblique; and that a body
projected describes in the most regular manner the same
parabola, whether projected in the direction, in which the
earth moves, or in the opposite direction, if the projecting
force be the same[185]. From this we learn, that
if the satellite moved about its primary with perfect regularity,
besides its motion about the primary, it would
participate of all the motion of its primary; have the
same progressive velocity, with which the primary is carried
about the sun; and be impelled with the same velocity
as the primary towards the sun, in a direction parallel
to that impulse of its primary. And on the contrary, the
want of either of these, in particular of the impulse towards
the sun, will occasion great inequalities in the motion
of the secondary planet. The inequalities, which would
arise from the absence of this impulse towards the sun are
so great, that by the regularity, which appears in the motion
of the secondary planets, it is proved, that the sun communicates,
the same velocity to them by its action, as it gives
to their primary at the same distance. For Sir Isaac Newton
informs us, that upon examination he found, that if
any of the satellites of Jupiter were attracted by the sun
more or less, than Jupiter himself at the same distance, the
orbit of that satellite, instead of being concentrical to Jupiter,
must have its center at a greater or less distance, than
the center of Jupiter from the sun, nearly in the subduplicate
proportion of the difference between the sun’s action upon
the satellite, and upon Jupiter; and therefore if any satellite
were attracted by the sun but 1/1000 part more or less,
than Jupiter is at the same distance, the center of the
orbit of that satellite would be distant from the center of
Jupiter no less than a fifth part of the distance of the outermost
satellite from Jupiter[186]; which is almost the whole
distance of the innermost satellite. By the like argument
the satellites of Saturn gravitate towards the sun, as much
as Saturn it self at the same distance; and the moon as
much as the earth.

8. Thus is proved, that the sun acts upon the secondary
planets, as much as upon the primary at the same
distance: but it was found in the last chapter, that the
action of the sun upon bodies is reciprocally in the duplicate
proportion of the distance; therefore the secondary
planets being sometimes nearer to the sun than the primary,
and sometimes more remote, they are not alway
acted upon in the same degree with their primary, but
when nearer to the sun, are attracted more, and when farther
distant, are attracted less. Hence arise various inequalities
in the motion of the secondary planets[187].

9. Some of these inequalities would take place, though
the moon, if undisturbed by the sun, would have moved in
a circle concentrical to the earth, and in the plane of the earth’s
motion; others depend on the elliptical figure, and the oblique
situation of the moon’s orbit. One of the first kind is,
that the moon is caused so to move, as not to describe equal
spaces in equal times, but is continually accelerated, as she
passes from the quarter to the new or full, and is retarded
again by the like degrees in returning from the new and full
to the next quarter. Here we consider not so much the absolute,
as the apparent motion of the moon in respect to us.

10. The principles of astronomy teach how to distinguish
these two motions. Let S (in fig. 95.) represent the
sun, A the earth moving in its orbit B C, D E F G the moon’s
orbit, the place of the moon H. Suppose the earth to have
moved from A to I. Because it has been shewn, that the
moon partakes of all the progressive motion of the earth; and
likewise that the sun attracts both the earth and moon equally,
when they are at the same distance from it, or that the
mean action of the sun upon the moon is equal to its action
upon the earth: we must therefore consider the earth as carrying
about with it the moon’s orbit; so that when the
earth is removed from A to I, the moon’s orbit shall likewise
be removed from its former situation into that denoted
by K L M N. But now the earth being in I, if the moon
were found in O, so that O I should be parallel to H A,
though the moon would really have moved from H to O, yet
it would not have appeared to a spectator upon the earth to
have moved at all, because the earth has moved as much it
self; so that the moon would still appear in the same place
with respect to the fixed stars. But if the moon be observed
in P, it will then appear to have moved, its apparent motion
being measured by the angle under O I P. And if the angle
under P I S be less than the angle under H A S, the moon
will have approached nearer to its conjunction with the sun.

11. To come now to the explication of the mentioned
inequality in the moon’s motion: let S (in fig. 96.) represent
the sun, A the earth, B C D E the moon’s orbit, C the place of the
moon, when in the latter quarter. Here it will be nearly at the
same distance from the sun, as the earth is. In this case therefore
they will both be equally attracted, the earth in the direction
A S, and the moon in the direction C S. Whence as the
earth in moving round the sun is continually descending toward
it, so the moon in this situation must in any equal portion
of time descend as much; and therefore the position of
the line A C in respect of A S, and the change, which the
moon’s motion produces in the angle under C A S, will not be
altered by the sun.



12. But now as soon as ever the moon is advanced from
the quarter toward the new or conjunction, suppose to G,
the action of the sun upon it will have a different effect. Here,
were the sun’s action upon the moon to be applied in the direction
G H parallel to A S, if its action on the moon were
equal to its action on the earth, no change would be wrought
by the sun on the apparent motion of the moon round the
earth. But the moon receiving a greater impulse in G than
the earth receives in A, were the sun to act in the direction
G H, yet it would accelerate the description of the space
D A G, and cause the angle under G A D to decrease faster,
than otherwise it would. The sun’s action will have this effect
upon account of the obliquity of its direction to that, in
which the earth attracts the moon. For the moon by this
means is drawn by two forces oblique to each other, one
drawing from G toward A, the other from G toward H,
therefore the moon must necessarily be impelled toward D.
Again, because the sun does not act in the direction G H parallel
to S A, but in the direction G S oblique to it, the sun’s
action on the moon will by reason of this obliquity farther contribute
to the moon’s acceleration. Suppose the earth in any
short space of time would have moved from A to I, if not
attracted by the sun; the point I being in the straight line C E,
which touches the earth’s orbit in A. Suppose the moon in
the same time would have moved in her orbit from G to K,
and besides have partook of all the progressive motion of the
earth. Then if K L be drawn parallel to A I, and taken equal
to it, the moon, if not attracted by the sun, would be found
in L. But the earth by the sun’s action is removed from I. Suppose
it were moved down to M in the line I M N parallel
to S A, and if the moon were attracted but as much, and in
the same direction, as the earth is here supposed to be attracted,
so as to have descended during the same time in the line L O,
parallel also to A S, down as far as P, till L P were equal
to I M; the angle under P M N would be equal to that
under L I N, that is, the moon will appear advanced no farther
forward, than if neither it nor the earth had been subject
to the sun’s action. But this is upon the supposition, that the
action of the sun upon the moon and earth were equal;
whereas the moon being acted upon more than the earth, did
the sun’s action draw the moon in the line L O parallel to A S,
it would draw it down so far as to make L P greater than
I M; whereby the angle under P M N will be rendred less,
than that under L I N. But moreover, as the sun draws the
earth in a direction oblique to I N, the earth will be found
in its orbit somewhat short of the point M; however the
moon is attracted by the sun still more out of the line L O,
than the earth is out of the line I N; therefore this obliquity
of the sun’s action will yet farther diminish the angle
under P M N.

13. Thus the moon at the point G receives an impulse
from the sun, whereby her motion is accelerated. And the
sun producing this effect in every place between the quarter
and the conjunction, the moon will move from the quarter
with a motion continually more and more accelerated; and
therefore by acquiring from time to time additional degrees
of velocity in its orbit, the spaces, which are described in
equal times by the line drawn from the earth to the moon, will
not be every where equal, but those toward the conjunction
will be greater, than those toward the quarter. But now in
the moon’s passage from the conjunction D to the next quarter
the sun’s action will again retard the moon, till at the next
quarter in E it be restored to the first velocity, which it had
in C.

14. Again as the moon moves from E to the full or opposition
to the sun in B, it is again accelerated, the deficiency
of the sun’s action upon the moon, from what it has upon the
earth, producing here the same effect as before the excess of its
action. Consider the moon in Q, moving from E towards B.
Here if the moon were attracted by the sun in a direction
parallel to A S, yet being acted on less than the earth, as
the earth descends toward the sun, the moon will in some
measure be left behind. Therefore Q F being drawn parallel
to S B, a spectator on the earth would see the moon
move, as if attracted from the point Q in the direction
Q F with a degree of force equal to that, whereby the sun’s
action on the moon falls short of its action on the earth. But
the obliquity of the sun’s action has also here an effect. In
the time the earth would have moved from A to I without the
influence of the sun, let the moon have moved in its orbit from
Q to R. Drawing therefore R T parallel to A I, and equal to the
same, for the like reason as before, the moon by the motion of
its orbit, if not at all attracted by the sun, must be found in T;
and therefore, if attracted in a direction parallel to S A, would
be in the line T V parallel to A S; suppose in W. But the
moon in Q being farther off the sun than the earth, it will be
less attracted, that is, T W will be less than I M, and if the
line S M be prolonged toward X, the angle under X M W
will be less than that under X I T. Thus by the sun’s action
the moon’s passage from the quarter to the full would be accelerated,
if the sun were to act on the earth and moon in a
direction parallel to A S: and the obliquity of the sun’s action
will still more increase this acceleration. For the action
of the sun on the moon is oblique to the line S A the whole
time of the moon’s passage from Q to T, and will carry
the moon out of the line T V toward the earth. Here I suppose
the time of the moon’s passage from Q to T so short, that
it shall not pass beyond the line S A. The earth also will come
a little short of the line I N, as was said before. From these
causes the angle under X M W will be still farther lessened.

15. The moon in passing from the opposition B to the
next quarter will be retarded again by the same degrees, as
it is accelerated before its appulse to the opposition. Because
this action of the sun, which in the moon’s passage from the
quarter to the opposition causes it to be extraordinarily accelerated,
and diminishes the angle, which measures its distance
from the opposition; will make the moon slacken its pace afterwards,
and retard the augmentation of the same angle in
its passage from the opposition to the following quarter; that
is, will prevent that angle from increasing so fast, as otherwise
it would. And thus the moon, by the sun’s action upon it, is
twice accelerated and twice restored to its first velocity, every
circuit it makes round the earth. This inequality of the moon’s
motion about the earth is called by astronomers its variation.

16. The next effect of the sun upon the moon is, that it
gives the orbit of the moon in the quarters a greater degree
of curvature, than it would receive from the action of
the earth alone; and on the contrary in the conjunction and
opposition the orbit is less inflected.

17. When the moon is in conjunction with the sun in
the point D, the sun attracting the moon more forcibly than
it does the earth, the moon by that means is impelled less toward
the earth, than otherwise it would be, and so the orbit
is less incurvated; for the power, by which the moon is impelled
toward the earth, being that, by which it is inflected
from a rectilinear course, the less that power is, the less it
will be inflected. Again, when the moon is in the opposition
in B, farther removed from the sun than the earth is;
it follows then, though the earth and moon are both continually
descending to the sun, that is, are drawn by the sun
toward it self out of the place they would otherwise move
into, yet the moon descends with less velocity than the
earth; insomuch that the moon in any given space of
time from its passing the point of opposition will have
less approached the earth, than otherwise it would have
done, that is, its orbit in respect of the earth will approach
nearer to a straight line. In the last place, when
the moon is in the quarter in F, and equally distant
from the sun as the earth, we observed before, that
the earth and moon would descend with equal pace toward
the sun, so as to make no change by that descent
in the angle under F A S; but the length of the line F A must
of necessity be shortned. Therefore the moon in moving from
F toward the conjunction with the sun will be impelled more
toward the earth by the sun’s action, than it would have been
by the earth alone, if neither the earth nor moon had been
acted on by the sun; so that by this additional impulse the
orbit is rendred more curve, than it would otherwise be.
The same effect will also be produced in the other quarter.

18. Another effect of the sun’s action, consequent upon
this we have now explained, is, that though the moon undisturbed
by the sun might move in a circle having the earth
for its center; by the sun’s action, if the earth were to be
in the very middle or center of the moon’s orbit, yet the
moon would be nearer the earth at the new and full, than
in the quarters. In this probably will at first appear some
difficulty, that the moon should come nearest to the earth,
where it is least attracted to it, and be farthest off when most
attracted. Which yet will appear evidently to follow from
that very cause, by considering what was last shewn, that the
orbit of the moon in the conjunction and opposition is rendred
less curve; for the less curve the orbit of the moon is,
the less will the moon have descended from the place
it would move into, without the action of the earth. Now
if the moon were to move from any place without farther
disturbance from that action, since it would proceed in
the line, which would touch its orbit in that place, it would
recede continually from the earth; and therefore if the power
of the earth upon the moon, be sufficient to retain it at
the same distance, this diminution of that power will cause
the distance to increase, though in a less degree. But on the
other hand in the quarters, the moon, being pressed more towards
the earth than by the earth’s single action, will be
made to approach it; so that in passing from the conjunction
or opposition to the quarters the moon ascends from the
earth, and in passing from the quarters to the conjunction
and opposition it descends again, becoming nearer in these
last mentioned places than in the other.

19. All these forementioned inequalities are of different
degrees, according as the sun is more or less distant from the
earth; greater when the earth is nearest the sun, and less
when it is farthest off. For in the quarters, the nearer the
moon is to the sun, the greater is the addition to the earth’s
action upon it by the power of the sun; and in the conjunction
and opposition, the difference between the sun’s action
upon the earth and upon the moon is likewise so much the
greater.

20. This difference in the distance between the earth
and the sun produces a farther effect upon the moon’s motion;
causing the orbit to dilate when less remote from the
sun, and become greater, than when at a farther distance.
For it is proved by Sir Isaac Newton, that the action of
the sun, by which it diminishes the earth’s power over the
moon, in the conjunction or opposition, is about twice as
great, as the addition to the earth’s action by the sun in the
quarters[188]; so that upon the whole, the power of the earth
upon the moon is diminished by the sun, and therefore is
most diminished, when the action of the sun is strongest: but
as the earth by its approach to the sun has its influence lessened,
the moon being less attracted will gradually recede from
the earth; and as the earth in its recess from the sun recovers
by degrees its former power, the orbit of the moon must again
contract. Two consequences follow from hence: the
moon will be most remote from the earth, when the earth is
nearest the sun; and also will take up a longer time in performing
its revolution through the dilated orbit, than through
the more contracted.

21. These irregularities the sun would produce in the
moon, if the moon, without being acted on unequally by the
sun, would describe a perfect circle about the earth, and in
the plane of the earth’s motion; but though neither of these
suppositions obtain in the motion of the moon, yet the forementioned
inequalities will take place, only with some difference
in respect to the degree of them; but the moon by not
moving in this manner is subject to some other inequalities also.
For as the moon describes, instead of a circle concentrical
to the earth, an ellipsis, with the earth in one focus, that
ellipsis will be subjected to various changes. It can neither
preserve constantly the same position, nor yet the same figure;
and because the plane of this ellipsis is not the same
with that of the earth’s orbit, the situation of the plane, wherein
the moon moves, will continually change; neither the line
in which it intersects the plane of the earth’s orbit, nor the
inclination of the planes to each other, will remain for any
time the same. All these alterations offer themselves now to
be explained.

22. I shall first consider the changes which are made
in the plane of the moon’s orbit. The moon not moving
in the same plane with the earth, the sun is seldom in the
plane of the moon’s orbit, viz. only when the line made by
the common intersection of the two planes, if produced,
will pass through the sun, as is represented in fig. 97. where
S denotes the sun; T the earth; A T B the earth’s orbit described
upon the plane of this scheme; C D E F the moon’s
orbit, the part C D E being raised above, and the part C F E
depressed under the plane of this scheme. Here the line C E,
in which the plane of this scheme, that is, the plane of the
earth’s orbit and the plane of the moon’s orbit intersect each
other, being continued passes through the sun in S. When
this happens, the action of the sun is directed in the plane
of the moon’s orbit, and cannot draw the moon out of this
plane, as will evidently appear to any one that shall consider
the present scheme: for suppose the moon in G, and let a
straight line be drawn from G to S, the sun draws the moon
in the direction of this line from G toward S: but this line lies
in the plane of the orbit; and if it be prolonged from S beyond
G, the continuation of it will lie on the plane C D E; for the
plane itself, if sufficiently extended, will pass through the sun.
But in other cases the obliquity of the sun’s action to the plane
of the orbit will cause this plane continually to change.

23. Suppose in the first place, the line, in which the two
planes intersect each other, to be perpendicular to the line
which joins the earth and sun. Let T (in fig. 98, 99, 100, 101.)
represent the earth; S the sun; the plane of this scheme the
plane of the earth’s motion, in which both the sun and earth
are placed. Let A C be perpendicular to S T, which joins the
earth and sun; and let the line A C be that, in which the plane
of the moon’s orbit intersects the plane of the earth’s motion.
To the center T describe in the plane of the earth’s motion
the circle A B C D. And in the plane of the moon’s orbit
describe the circle A E C F, one half of which A E C will
be elevated above the plane of this scheme, the other half
A F C as much depressed below it.

24. Now suppose the moon to set forth from the point A
(in fig. 98.) in the direction of the plane A E C. Here she
will be continually drawn out of this plane by the action of
the sun: for this plane A E C, if extended, will not pass through
the sun, but above it; so that the sun, by drawing the moon
directly toward it self, will force it continually more and more
from that plane towards the plane of the earth’s motion, in
which it self is; causing it to describe the line A K G H I, which
will be convex to the plane A E C, and concave to the plane
of the earth’s motion. But here this power of the sun, which
is said to draw the moon toward the plane of the earth’s
motion, must be understood principally of so much only of
the sun’s action upon the moon, as it exceeds the action of the
same upon the earth. For suppose the preceding figure to be
viewed by the eye, placed in the plane of that scheme, and in
the line C T A on the side of A, the plane A B C D will appear as
the straight line D T B, (in fig. 102.) and the plane A E C F as another
straight line F E; and the curve line A K G H I under the
form of the line T K G H I.
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Now it is plain, that the earth and
moon being both attracted by the sun, if the sun’s action upon
both was equally strong, the earth T, and with it the plane
A E C F or line F T E in this scheme, would be carried toward
the sun with as great a pace as the moon, and therefore the
moon not drawn out of it by the sun’s action, excepting
only from the small obliquity of the direction of this action
upon the moon to that of the sun’s action upon the earth,
which arises from the moon’s being out of the plane of the
earth’s motion, and is not very considerable; but the action
of the sun upon the moon being greater than upon the earth,
all the time the moon is nearer to the sun than the earth is,
it will be drawn from the plane A E C or the line T E by
that excess, and made to describe the curve line A G I or
T G I. But it is the custom of astronomers, instead of considering
the moon as moving in such a curve line, to refer
its motion continually to the plane, which touches the true
line wherein it moves, at the point where at any time the
moon is. Thus when the moon is in the point A, its motion
is considered as being in the plane A E C, in whose direction it
then essaies to move; and when in the point K (in fig. 99.)
its motion is referred to the plane, which passes through the
earth, and touches the line A K G H I in the point K. Thus
the moon in passing from A to I will continually change the
plane of her motion. In what manner this change proceeds,
I shall now particularly explain.

25. Let the plane, which touches the line A K I in the point
K (in fig. 99.) intersect the plane of the earth’s orbit in the line
L T M. Then, because the line A K I is concave to the plane
A B C, it falls wholly between that plane, and the plane which
touches it in K; so that the plane M K L will cut the plane A E C,
before it meets with the plane of the earth’s motion; suppose
in the line Y T, and the point A will fall between K and L.
With a semidiameter equal to T Y or T L describe the semicircle
L Y M. Now to a spectator on the earth the moon, when
in A, will appear to move in the circle A E C F, and, when in
K, will appear to be moving in the semicircle L Y M. The
earth’s motion is performed in the plane of this scheme, and
to a spectator on the earth the sun will appear always moving
in that plane. We may therefore refer the apparent motion
of the sun to the circle A B C D, described in this plane about
the earth. But the points where this circle, in which the
sun seems to move, intersects the circle in which the moon
is seen at any time to move, are called the nodes of the moon’s
orbit at that time. When the moon is seen moving in the circle
A E C D, the points A and C are the nodes of the orbit;
when she appears in the semicircle L Y M, then L and M are
the nodes. Now here it appears, from what has been said,
that while the moon has moved from A to K, one of the
nodes has been carried from A to L, and the other as much
from C to M. But the motion from A to L, and from C to
M, is backward in regard to the motion of the moon, which
is the other way from A to K, and from thence toward C.

26. Farther the angle, which the plane, wherein the
moon at any time appears, makes with the plane of the earth’s
motion, is called the inclination of the moon’s orbit at that
time. And I shall now proceed to shew, that this inclination
of the orbit, when the moon is in K, is less than when
she was in A; or, that the plane L Y M, which touches the
line of the moon’s motion in K, makes a less angle with the
plane of the earth’s motion or with the circle A B C D, than
the plane A E C makes with the same. The semicircle L Y M
intersects the semicircle A E C in Y; and the arch A Y is less
than L Y, and both together less than half a circle. But it is demonstrated
by the writers on that part of astronomy, which is
called the doctrine of the sphere, that when a triangle is made,
as here, by three arches of circles A L, A Y, and Y L, the angle
under Y A B without the triangle is greater than the angle under
Y L A within, if the two arches A Y, Y L taken together do
not amount to a semicircle; if the two arches make a complete
semicircle, the two angles will be equal; but if the two
arches taken together exceed a semicircle, the inner angle under
Y L A is greater than the other[189]. Here therefore the two
arches A Y and L Y together being less than a semicircle, the
angle under A L Y is less, than the angle under B A E. But
from the doctrine of the sphere it is also evident, that the angle
under A L Y is equal to that, in which the plane of the
circle L Y K M, that is, the plane which touches the line A K G H I
in K, is inclined to the plane of the earth’s motion A B C;
and the angle under B A E is equal to that, in which the plane
A E C is inclined to the same plane. Therefore the inclination
of the former plane is less than the inclination of the latter.

27. Suppose now the moon to be advanced to the point
G (in fig. 100.) and in this point to be distant from its node
a quarter part of the whole circle; or in other words, to be
in the midway between its two nodes. And in this case the
nodes will have receded yet more, and the inclination of the
orbit be still more diminished: for suppose the line A K G H I
to be touched in the point G by a plane passing through the
earth T: let the intersection of this plane with the plane of
the earth’s motion be the line W T O, and the line T P its intersection
with the plane L K M. In this plane let the circle
N G O be described with the semidiameter T P or N T cutting
the other circle L K M in P. Now the line A K G I is convex
to the plane L K M, which touches it in K; and therefore the
plane N G O, which touches it in G, will intersect the other
touching plane between G and K; that is, the point P will fall
between those two points, and the plane continued to the
plane of the earth’s motion will pass beyond L; so that the
points N and O, or the places of the nodes, when the moon
is in G, will be farther from A and C than L and M, that is,
will have moved farther backward. Besides, the inclination
of the plane N G O to the plane of the earth’s motion A B C
is less, than the inclination of the plane L K M to the same; for
here also the two arches L P and N P taken together are less
than a semicircle, each of these arches being less than a quarter
of a circle; as appears, because G N, the distance of the
moon in G from its node N, is here supposed to be a quarter
part of a circle.

28. After the moon is passed beyond G, the case is altered;
for then these arches will be greater than quarters of the circle,
by which means the inclination will be again increased, tho’
the nodes still go on to move the same way. Suppose the
moon in H, (in fig. 101.) and that the plane, which touches
the line A K G I in H, intersects the plane of the earth’s motion
in the line Q T R, and the plane N G O in the line T V,
and besides that the circle Q H R be described in that plane;
then, for the same reason as before, the point V will fall between
H and G, and the plane R V Q will pass beyond the
last plane O V N, causing the points Q and R to fall farther
from A and C than N and O. But the arches N V, V Q are
each greater than a quarter of a circle, N V the least of them
being greater than G N, which is a quarter of a circle; and
therefore the two arches N V and V Q together exceed a semicircle;
consequently the angle under B Q V will be greater,
than that under B N V.

29. In the last place, when the moon is by this attraction
of the sun, drawn at length into the plane of the earth’s
motion, the node will have receded yet more, and the inclination
be so much increased, as to become somewhat more
than at first: for the line A K G H I being convex to all the
planes, which touch it, the part H I will wholly fall between
the plane Q V R and the plane A B C; so that the point I will fall
between B and R; and drawing I T W, the point W will be farther
remov’d from A than Q. But it is evident, that the plane,
which passes through the earth T, and touches the line A G I
in the point I, will cut the plane of the earth’s motion A B C D
in the line I T W, and be inclined to the same in the angle under
H I B; so that the node, which was first in A, after having
passed into L, N and Q, comes at last into the point W; as the
node which was at first in C has passed successively from thence
through the points M, O and R to I: but the angle under H I B,
which is now the inclination of the orbit to the plane of the
ecliptic, is manifestly not less than the angle under E C B or
E A B, but rather something greater.

30. Thus the moon in the case before us, while it passes
from the plane of the earth’s motion in the quarter, till it
comes again into the same plane, has the nodes of its orbit
continually moved backward, and the inclination of its orbit
is at first diminished, viz. till it comes to G in fig. 100, which is
near to its conjunction with the sun, but afterwards is increased
again almost by the same degrees, till upon the moon’s
arrival again to the plane of the earth’s motion, the inclination
of the orbit is restored to something more than its first
magnitude, though the difference is not very great, because
the points I and C are not far distant from each other[190].



31. After the same manner, if the moon had departed
from the quarter in C, it should have described the curve
line C X W (in fig. 98.) between the planes A F C and A D C,
which would be convex to the former of those planes, and
concave to the latter; so that, here also, the nodes should
continually recede, and the inclination of the orbit gradually
diminish more and more, till the moon arrived near its opposition
to the sun in X; but from that time the inclination
should again increase, till it became a little greater than at first.
This will easily appear, by considering, that as the action of
the sun upon the moon, by exceeding its action upon the earth,
drew it out of the plane A E C towards the sun, while the moon
passed from A to I; so, during its passage from C to W, the
moon being all that time farther from the sun than the earth,
it will be attracted less; and the earth, together with the
plane A E C F, will as it were be drawn from the moon, in
such sort, that the path the moon describes shall appear from
the earth, as it did in the former case by the moon’s being
drawn away.

32. These are the changes, which the nodes and the inclination
of the moon’s orbit undergo, when the nodes are in
the quarters; but when the nodes by their motion, and the
motion of the sun together, come to be situated between the
quarter and conjunction or opposition, their motion and the
change made in the inclination of the orbit are somewhat different.



33. Let A G C H (in fig. 103.) be a circle described in the
plane of the earth’s motion, having the earth in T for its center.
Let the point opposite to the sun be A, and the point G a fourth
part of the circle distant from A. Let the nodes of the moon’s
orbit be situated in the line B T D, and B the node, falling between
A, the place where the moon would be in the full,
and G the place where the moon would be in the quarter.
Suppose B E D F to be the plane, in which the moon essays to
move, when it proceeds from the point B. Because the moon
in B is more distant from the sun than the earth, it shall be
less attracted by the sun, and shall not descend towards the
sun so fast as the earth: consequently it shall quit the plane
B E D F, which we suppose to accompany the earth, and describe
the line B I K convex thereto, till such time as it comes
to the point K, where it will be in the quarter: but from
thenceforth being more attracted than the earth, the moon
shall change its course, and the following part of the path
it describes shall be concave to the plane B E D or B G D,
and shall continue concave to the plane B G D, till it crosses
that plane in L, just as in the preceding case.  Now I say,
while the moon is passing from B to K, the nodes, contrary
to what was found in the foregoing case, will proceed forward,
or move the same way with the moon[191]; and at the
same time the inclination of the orbit will increase[192].
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34. When the moon is in the point I, let the plane
M I N pass through the earth T, and touch the path of the
moon in I, cutting the plane of the earth’s motion, in the line
M T N, and the plane B E D in the line T O. Because the line
B I K is convex to the plane B E D, which touches it in B, the
plane N I M must cross the plane D E B, before it meets the
plane C G B; and therefore the point M will fall from B towards
G, and the node of the moon’s orbit being translated
from B to M is moved forward.

35. I say farther, the angle under O M G, which the
plane M O N makes with the plane B G C, is greater than the
angle under O B G, which the plane B O D makes with the
same. This appears from what has been already explained;
because the arches B O, O M are each less than the quarter of
a circle, and therefore taken both together are less than a semicircle.

36. Again, when the moon is come to the point K in
its quarter, the nodes will be advanced yet farther forward,
and the inclination of the orbit also more augmented. Hitherto
the moon’s motion has been referred to the plane,
which passing through the earth touches the path of the
moon in the point, where the moon is, according to what
was asserted at the beginning of this discourse upon the
nodes, that it is the custom of astronomers so to do. But
here in the point K no such plane can be found; on the contrary,
seeing the line of the moon’s motion on one side the point
K is convex to the plane B E D, and on the other side concave
to the same, no plane can pass through the points T and
K but will cut the line B K L in that point. Therefore instead
of such a touching plane, we must here make use of what is
equivalent, the plane P K Q, with which the line B K L shall
make a less angle than with any other plane; for this plane
does as it were touch the line B K in the point K, since it so
cuts it, that no other plane can be drawn so, as to pass between
the line B K and the plane P K Q. But now it is evident,
that the point P, or the node, is removed from M towards
G, that is, has moved yet farther forward; and it is
likewise as manifest, that the angle under K P G, or the inclination
of the moon’s orbit in the point K, is greater than
the angle under I M G, for the reason so often assigned.

37. After the moon has passed the quarter, the path of
the moon being concave to the plane A G C H, the nodes, as
in the preceding case, shall recede, till the moon arrives at
the point L; which shews, that considering the whole time
of the moon’s passing from B to L, at the end of that time the
nodes shall be found to have receded, or to be placed backwarder,
when the moon is in L, than when it was in B. For
the moon takes a longer time in passing from K to L, than
in passing from B to K; and therefore the nodes continue to
recede a longer time, than they moved forwards; so that their
recess must surmount their advance.

38. In the same manner, while the moon is in its passage
from K to L, the inclination of the orbit shall diminish, till
the moon comes to the point, in which it is one quarter
part of a circle distant from its node; suppose in the point
R; and from that time the inclination shall again increase.
Since therefore the inclination of the orbit increases, while
the moon is passing from B to K, and diminishes itself again
only, while the moon is passing from K to R, and then
augments again, till the moon arrive in L; while the moon is
passing from B to L, the inclination of the orbit is much more
increased than diminished, and will be distinguishably greater,
when the moon is come to L, than when it set out from B.

39. In like manner, while the moon is passing from L on
the other side the plane A G C H, the node shall advance forward,
as long as the moon is between the point L and the next
quarter; but afterwards it shall recede, till the moon come
to pass the plane A G C H again in the point V, between B and
A: and because the time between the moon’s passing from
L to the next quarter is less, than the time between that quarter
and the moon’s coming to the point V, the node shall
have more receded than advanced; so that the point V will
be nearer to A, than L is to C. So also the inclination of the
orbit, when the moon is in V, will be greater, than when the
moon was at L; for this inclination increases all the time the
moon is between L and the next quarter; it decreases only
while the moon is passing from this quarter to the mid way
between the two nodes, and from thence increases again during
the whole passage through the other half of the way to
the next node.

40. Thus we have traced the moon from her node in
the quarter, and shewn, that at every period of the moon the
nodes will have receded, and thereby will have approached
toward a conjunction with the sun. But this conjunction will
be much forwarded by the visible motion of the sun itself.
In the last scheme the sun will appear to move from S toward
W. Suppose it appeared to have moved from S to W,
while the moon’s node has receded from B to V, then drawing
the line W T X, the arch V X will represent the distance of the
line drawn between the nodes from the sun, when the moon
is in V; whereas the arch B A represented that distance, when
the moon was in B. This visible motion of the sun is much
greater, than that of the node; for the sun appears to revolve
quite round each year, and the node is near 19 years in making
one revolution. We have also seen, that when the node
was in the quadrature, the inclination of the moon’s orbit decreased,
till the moon came to the conjunction, or opposition,
according to which node it set out from; but that afterwards
it again increased, till it became at the next node rather
greater than at the former. When the node is once removed
from the quarter nearer to a conjunction with the sun,
the inclination of the moon’s orbit, when the moon comes
into the node, is more sensibly greater, than it was in the node
preceding; the inclination of the orbit by this means more
and more increasing till the node comes into conjunction with
the sun; at which time it has been shewn above, that the sun
has no power to change the plane of the moon’s motion; and
consequently has no effect either on the nodes, or on the inclination
of the orbit.

41. As soon as the nodes, by the action of the sun, are
got out of conjunction toward the other quarters, they begin
again to recede as before; but the inclination of the orbit in
the appulse of the moon to each succeeding node is less than
at the preceding, till the nodes come again into the quarters.
This will appear as follows. Let A (in fig. 104.) represent
one of the moon’s nodes placed between the point
of opposition B and the quarter C. Let the plane A D E pass
through the earth T, and touch the path of the moon in A.
Let the line A F G H be the path of the moon in her passage
from A to H, where she crosses again the plane of the earth’s
motion. This line will be convex toward the plane A D E, till
the moon comes to G, where she is in the quarter; and after
this, between G and H, the same line will be concave toward
this plane. All the time this line is convex toward the plane
A D E, the nodes will recede; and on the contrary proceed,
while it is concave to that plane. All this will easily be conceived
from what has been before so largely explained. But
the moon is longer in passing from A to G, than from G to H;
therefore the nodes recede a longer time, than they proceed;
consequently upon the whole, when the moon is arrived at
H, the nodes will have receded, that is, the point H will fall
between B and E. The inclination of the orbit will decrease,
till the moon is arrived to the point F, in the middle between
A and H. Through the passage between F and G the inclination
will increase, but decrease again in the remaining part
of the passage from G to H, and consequently at H must be
less than at A. The like effects, both in respect to the nodes
and inclination of the orbit, will take place in the following
passage of the moon on the other side of the plane A B E C,
from H, till it comes over that plane again in I.



42. Thus the inclination of the orbit is greatest, when
the line drawn between the moon’s nodes will pass through
the sun; and least, when this line lies in the quarters, especially
if the moon at the same time be in conjunction with the
sun, or in the opposition. In the first of these cases the nodes
have no motion, in all others, the nodes will each month
have receded: and this regressive motion will be greatest,
when the nodes are in the quarters; for in that case the nodes
have no progressive motion during the whole month, but in
all other cases the nodes do at some times proceed forward,
viz. whenever the moon is between either quarter, and the
node which is less distant from that quarter than a fourth
part of a circle.

43. It now remains only to explain the irregularities in
the moon’s motion, which follow from the elliptical figure
of the orbit. By what has been said at the beginning of this
chapter it appears, that the power of the earth on the moon
acts in the reciprocal duplicate proportion of the distance:
therefore the moon, if undisturbed by the sun, would move
round the earth in a true ellipsis, and the line drawn from
the earth to the moon would pass over equal spaces in equal
portions of time. That this description of the spaces is
altered by the sun, has been already declared. It has also
been shown, that the figure of the orbit is changed each
month; that the moon is nearer the earth at the new and
full, and more remote in the quarters, than it would be without
the sun. Now we must pass by these monthly changes,
and consider the effect, which the sun will have in the different
situations of the axis of the orbit in respect of that luminary.

44. The action of the sun varies the force, wherewith
the moon is drawn toward the earth; in the quarters the
force of the earth is directly increased by the sun; at the
new and full the same is diminished; and in the intermediate
places the influence of the earth is sometimes aided, and
sometimes lessened by the sun. In these intermediate places
between the quarters and the conjunction or opposition,
the sun’s action is so oblique to the action of the earth on
the moon, as to produce that alternate acceleration and retardment
of the moon’s motion, which I observed above
to be stiled the variation. But besides this effect, the power,
by which the earth attracts the moon toward itself, will not
be at full liberty to act with the same force, as if the sun
acted not at all on the moon. And this effect of the sun’s
action, whereby it corroborates or weakens the action of the
earth, is here only to be considered. And by this influence
of the sun it comes to pass, that the power, by which the
moon is impelled toward the earth, is not perfectly in the reciprocal
duplicate proportion of the distance. Consequently
the moon will not describe a perfect ellipsis. One particular,
wherein the moon’s orbit will differ from an ellipsis, consists
in the places, where the motion of the moon is perpendicular
to the line drawn from itself to the earth. In an
ellipsis, after the moon should have set out in the direction
perpendicular to this line drawn from itself to the earth,
and at its greatest distance from the earth, its motion would
again become perpendicular to this line drawn between itself
and the earth, and the moon be at its nearest distance
from the earth, when it should have performed half its period;
after performing the other half of its period its motion
would again become perpendicular to the forementioned
line, and the moon return into the place whence it set out,
and have recovered again its greatest distance. But the moon
in its real motion, after setting out as before, sometimes makes
more than half a revolution, before its motion comes again
to be perpendicular to the line drawn from itself to the earth,
and the moon is at its nearest distance; and then performs
more than another half of an intire revolution before its motion
can a second time recover its perpendicular direction to
the line drawn from the moon to the earth, and the moon
arrive again to its greatest distance from the earth. At other
times the moon will descend to its nearest distance, before it
has made half a revolution, and recover again its greatest distance,
before it has made an intire revolution. The place,
where the moon is at its greatest distance from the earth, is called
the moon’s apogeon, and the place of the least distance
the perigeon. This change of the place, where the moon
successively comes to its greatest distance from the earth, is
called the motion of the apogeon. In what manner the sun
causes the apogeon to move, I shall now endeavour to explain.

45. Our author shews, that if the moon were attracted
toward the earth by a composition of two powers, one
of which were reciprocally in the duplicate proportion of
the distance from the earth, and the other reciprocally
in the triplicate proportion of the same distance; then,
though the line described by the moon would not be in
reality an ellipsis, yet the moon’s motion might be perfectly
explained by an ellipsis, whose axis should be made to move
round the earth; this motion being in consequence, as astronomers
express themselves, that is, the same way as the moon
itself moves, if the moon be attracted by the sum of the two
powers; but the axis must move in antecedence, or the contrary
way, if the moon be acted on by the difference of these
powers. What is meant by duplicate proportion has been
often explained; namely, that if three magnitudes, as A, B,
and C, are so related, that the second B bears the same proportion
to the third C, as the first A bears to the second
B, then the proportion of the first A to the third C, is the
duplicate of the proportion of the first A to the second B.
Now if a fourth magnitude, as D, be assumed, to which C
shall bear the same proportion as A bears to B, and B to C,
then the proportion of A to D is the triplicate of the proportion
of A to B.

46. The way of representing the moon’s motion in
this case is thus. T denoting the earth (in fig. 105, 106.)
suppose the moon in the point A, its apogeon, or greatest
distance from the earth, moving in the direction A F perpendicular
to A B, and acted upon from the earth by two
such forces as have been named. By that power alone,
which is reciprocally in the duplicate proportion of the
distance, if the moon let out from the point A with a
proper degree of velocity, the ellipsis A M B may be described.
But if the moon be acted upon by the sum of the
forementioned powers, and the velocity of the moon in the
point A be augmented in a certain proportion[193]; or if that
velocity be diminished in a certain proportion, and the moon
be acted upon by the difference of those powers; in both
these cases the line A E, which shall be described by the
moon, is thus to be determined. Let the point M be that,
into which the moon would have arrived in any given space
of time, had it moved in the ellipsis A M B. Draw M T,
and likewise C T D in such sort, that the angle under A T M
shall bear the same proportion to the angle under A T C, as
the velocity, with which the ellipsis A M B must have been described,
bears to the difference between this velocity, and the
velocity, with which the moon must set out from the point A
in order to describe the path A E. Let the angle A T C be taken
toward the moon (as in fig. 105.) if the moon be attracted
by the sum of the powers; but the contrary way (as in
fig. 106.) if by their difference. Then let the line A B be
moved into the position C D, and the ellipsis A M B into the
situation C N D, so that the point M be translated to L: then
the point L shall fall upon the path of the moon A E.

47. The angular motion of the line A T, wereby it is
removed into the situation C T, represents the motion of the
apogeon; by the means of which the motion of the moon
might be fully explicated by the ellipsis A M B, if the action of
the sun upon it was directed to the center of the earth, and
reciprocally in the triplicate proportion of the moon’s distance
from it. But that not being so, the apogeon will not move in
the regular manner now described. However, it is to be observed
here, that in the first of the two preceding cases, where
the apogeon moves forward, the whole centripetal power
increases faster, with the decrease of distance, than if the
intire power were reciprocally in the duplicate proportion of
the distance; because one part only is in that proportion,
and the other part, which is added to this to make up the
whole power, increases faster with the decrease of distance.
On the other hand, when the centripetal power is the difference
between these two, it increases less with the decrease of
the distance, than if it were simply in the reciprocal duplicate
proportion of the distance. Therefore if we chuse to explain
the moon’s motion by an ellipsis (as is most convenient
for astronomical uses to be done, and by reason of the small
effect of the sun’s power, the doing so will not be attended
with any sensible error;) we may collect in general, that
when the power, by which the moon is attracted to the earth,
by varying the distance, increases in a greater than in the duplicate
proportion of the distance diminished, a motion in consequence
must be ascribed to the apogeon; but that when the
attraction increases in a less proportion than that named, the
apogeon must have given to it a motion in antecedence[194]. It is
then observed by Sir Is. Newton, that the first of these cases
obtains, when the moon is in the conjunction and opposition;
and the latter, when the moon is in the quarters: so that
in the first the apogeon moves according to the order of the
signs; in the other, the contrary way[195]. But, as was said before,
the disturbance given to the action of the earth by the sun in
the conjunction and opposition being near twice as great as
in the quarters[196], the apogeon will advance with a greater
velocity than recede, and in the compass of a whole revolution
of the moon will be carried in consequence[197].

48. It is shewn in the next place by our author, that
when the line A B coincides with that, which joins the earth
and the sun, the progressive motion of the apogeon, when
the moon is in the conjunction or opposition, exceeds the
regressive in the quadratures more than in any other situation
of the line A B[198]. On the contrary, when the line A B
makes right angles with that, which joins the earth and sun,
the retrograde motion will be more considerable[199], nay is
found so great as to exceed the progressive; so that in this
case the apogeon in the compass of an intire revolution of
the moon is carried in antecedence. Yet from the considerations
in the last paragraph the progressive motion exceeds
the other; so that in the whole the mean motion of
the apogeon is in consequence, according as astronomers
find. Moreover, the line A B changes its situation with that,
which joins the earth and sun, by such slow degrees, that the
inequalities in the motion of the apogeon arising from this
last consideration, are much greater than what arises from
the other[200].



49. Farther, this unsteady motion in the apogeon is attended
with another inequality in the motion of the moon, that
it cannot be explained at all times by the same ellipsis. The
ellipsis in general is called by astronomers an eccentric orbit.
The point, in which the two axis’s cross, is called the center of
the figure; because all lines drawn through this point within
the ellipsis, from side to side, are divided in the middle by
this point. But the center, about which the heavenly bodies
revolve, lying out of this center of the figure in one focus,
these orbits are said to be eccentric; and where the distance of
the focus from this center bears the greatest proportion to the
whole axis, that orbit is called the most eccentric: and in
such an orbit the distance from the focus to the remoter extremity
of the axis bears the greatest proportion to the distance
of the nearer extremity. Now whenever the apogeon
of the moon moves in consequence, the moon’s motion
must be referred to an orbit more eccentric, than what the
moon would describe, if the whole power, by which the
moon was acted on in its passing from the apogeon, changed
according to the reciprocal duplicate proportion of the distance
from the earth, and by that means the moon did describe
an immoveable ellipsis; and when the apogeon moves
in antecedence, the moon’s motion must be referred to an
orbit less eccentric. In the first of the two figures last referred
to, the true place of the moon L falls without the orbit
A M B, to which its motion is referred: whence the orbit A L E,
truly described by the moon, is less incurvated in the point A,
than is the orbit A M B; therefore the orbit A M B is more oblong,
and differs farther from a circle, than the ellipsis would,
whose curvature in A were equal to that of the line A L B,
that is, the proportion of the distance of the earth T from
the center of the ellipsis to its axis will be greater in the ellipsis
A M B, than in the other; but that other is the ellipsis,
which the moon would describe, if the power acting upon it
in the point A were altered in the reciprocal duplicate proportion
of the distance. In the second figure, when the
apogeon recedes, the place of the moon L falls within the
orbit A M B, and therefore that orbit is less eccentric, than
the immoveable orbit which the moon should describe. The
truth of this is evident; for, when the apogeon moves forward,
the power, by which the moon is influenced in its descent
from the apogeon, increases faster with the decrease of
distance, than in the duplicate proportion of the distance;
and consequently the moon being drawn more forcibly toward
the earth, it will descend nearer to it. On the other
hand, when the apogeon recedes, the power acting on the
moon increases with the decrease of distance in less than the
duplicate proportion of the distance; and therefore the moon
is less impelled toward the earth, and will not descend so low.

50. Now suppose in the first of these figures, that the
apogeon A is in the situation, where it is approaching toward
the conjunction or opposition of the sun. In this case the progressive
motion of the apogeon is more and more accelerated.
Here suppose that the moon, after having descended from A
through the orbit A E as far as F, where it is come to its nearest
distance from the earth, ascends again up the line F G. Because
the motion of the apogeon is here continually more and
more accelerating, the cause of its motion is constantly upon
the increase; that is, the power, whereby the moon is
drawn to the earth, will decrease with the increase of distance,
in the moon’s ascent from F, in a greater proportion than that
wherewith it increased with the decrease of dista