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PART I.

GREEK ASTRONOMY TO ARISTARCHUS.



The title-page of this book necessarily bears the name of
one man; but the reader will find in its pages the story, or
part of the story, of many other Pioneers of Progress.
The crowning achievement of anticipating the hypothesis
of Copernicus belongs to Aristarchus of Samos alone;
but to see it in its proper setting it is necessary to have
followed in the footsteps of the earlier pioneers who, by
one bold speculation after another, brought the solution
of the problem nearer, though no one before Aristarchus
actually hit upon the truth. This is why the writer has
thought it useful to prefix to his account of Aristarchus
a short sketch of the history of the development of
astronomy in Greece down to Aristarchus’s time, which
is indeed the most fascinating portion of the story of
Greek astronomy.

The extraordinary advance in astronomy made by the
Greeks in a period of little more than three centuries
is a worthy parallel to the rapid development, in their
hands, of pure geometry, which, created by them as a
theoretical science about the same time, had by the time
of Aristarchus covered the ground of the Elements (including
solid geometry and the geometry of the sphere), had
established the main properties of the three conic sections,
had solved problems which were beyond the geometry of
the straight line and circle, and finally, before the end of
the third century B.C., had been carried to its highest
perfection by the genius of Archimedes, who measured
the areas of curves and the surfaces and volumes of
curved surfaces by geometrical methods practically anticipating
the integral calculus.

To understand how all this was possible we have to
remember that the Greeks, pre-eminently among all the
nations of the world, possessed just those gifts which are
essential to the initiation and development of philosophy
and science. They had in the first place a remarkable
power of accurate observation; and to this were added
clearness of intellect to see things as they are, a passionate
love of knowledge for its own sake, and a genius for
speculation which stands unrivalled to this day. Nothing
that is perceptible to the senses seems to have escaped
them; and when the apparent facts had been accurately
ascertained, they wanted to know the why and the
wherefore, never resting satisfied until they had given a
rational explanation, or what seemed to them to be such,
of the phenomena observed. Observation or experiment
and theory went hand in hand. So it was that they
developed such subjects as medicine and astronomy. In
astronomy their guiding principle was, in their own expressive
words, to “save the phenomena”. This meant
that, as more and more facts became known, their theories
were continually revised to fit them.

It would be easy to multiply instances; it must
suffice in this place to mention one, which illustrates not
only the certainty with which the Greeks detected the
occurrence of even the rarest phenomena, but also the
persistence with which they sought for the true explanation.

Cleomedes (second century A.D.) mentions that there
were stories of extraordinary eclipses which “the more
ancient of the mathematicians” had vainly tried to
explain; the supposed “paradoxical” case was that in
which, while the sun seems to be still above the western
horizon, the eclipsed moon is seen to rise in the east.
The phenomenon appeared to be inconsistent with the
explanation of lunar eclipses by the entry of the moon
into the earth’s shadow; how could this be if both
bodies were above the horizon at the same time? The
“more ancient” mathematicians essayed a geometrical
explanation; they tried to argue that it was possible
that a spectator standing on an eminence of the spherical
earth might see along the generators of a cone i.e. a
little downwards on all sides instead of merely in the
plane of the horizon, and so might see both the sun and
the moon even when the latter was in the earth’s
shadow. Cleomedes denies this and prefers to regard
the whole story of such cases as a fiction designed merely
for the purpose of plaguing astronomers and philosophers;
no Chaldæan, he says, no Egyptian, and no mathematician
or philosopher has recorded such a case. But the
phenomenon is possible, and it is certain that it had been
observed in Greece and that the Greek astronomers did
not rest until they had found out the solution of the
puzzle; for Cleomedes himself gives the explanation,
namely that the phenomenon is due to atmospheric refraction.
Observing that such cases of atmospheric
refraction were especially noticeable in the neighbourhood
of the Black Sea, Cleomedes goes on to say that it
is possible that the visual rays going out from our eyes
are refracted through falling on wet and damp air, and so
reach the sun although it is already below the horizon;
and he compares the well-known experiment of the ring
at the bottom of a jug, where the ring, just out of sight
when the jug is empty, is brought into view when water
is poured in.

The genius of the race being what it was, the Greeks
must from the earliest times have been in the habit of
scanning the heavens, and, as might be expected, we
find the beginnings of astronomical knowledge in the
earliest Greek literature.

In the Homeric poems and in Hesiod the earth is a
flat circular disc; round this disc runs the river Oceanus,
encircling the earth and flowing back into itself. The
flat earth has above it the vault of heaven, like a sort
of hemispherical dome exactly covering it; this vault
remains for ever in one position; the sun, moon and
stars move round under it, rising from Oceanus in the
east and plunging into it again in the west.

Homer mentions, in addition to the sun and moon,
the Morning Star, the Evening Star, the Pleiades, the
Hyades, Orion, the Great Bear (“which is also called by
the name of the Wain”), Sirius, the late-setting Boötes
(the ploughman driving the Wain), i.e. Arcturus, as it
was first called by Hesiod. Of the Great Bear Homer
says that it turns round on the same spot and watches
Orion; it alone is without lot in Oceanus’s bath (i.e.
it never sets). With regard to the last statement it is to
be noted that some of the principal stars of the Great
Bear do now set in the Mediterranean, e.g. in places
further south than Rhodes (lat. 36°), γ, the hind foot,
and η, the tip of the tail, and at Alexandria all the
seven stars except α, the head. It might be supposed
that here was a case of Homer “nodding”. But no; the
old poet was perfectly right; the difference between the
facts as observed by him and as seen by us respectively
is due to the Precession of the Equinoxes, the gradual
movement of the fixed stars themselves about the pole of
the ecliptic, which was discovered by Hipparchus (second
century B.C.). We know from the original writings of
the Greek astronomers that in Eudoxus’s time (say 380
B.C.) the whole of the Great Bear remained always well
above the horizon, while in the time of Proclus (say A.D.
460) the Great Bear “grazed” the horizon.

In Homer astronomical phenomena are only vaguely
used for such purposes as fixing localities or marking
times of day or night. Sometimes constellations are
used in giving sailing directions, as when Calypso directs
Odysseus to sail in such a way as always to keep the
Great Bear on his left.

Hesiod mentions practically the same stars as Homer,
but makes more use of celestial phenomena for determining
times and seasons. For example, he marked the
time for sowing at the beginning of winter by the setting
of the Pleiades in the early twilight, or again by the
early setting of the Hyades or Orion, which means the
3rd, 7th, or 15th November in the Julian calendar
according to the particular stars taken; the time for
harvest he fixed by the early rising of the Pleiades
(19th May), threshing time by the early rising of
Orion (9th July), vintage time by the early rising of
Arcturus (18th September), and so on. Hesiod makes
spring begin sixty days after the winter solstice, and the
early summer fifty days after the summer solstice. Thus
he knew about the solstices, though he says nothing of
the equinoxes. He had an approximate notion of the
moon’s period, which he put at thirty days.

But this use of astronomical facts for the purpose
of determining times and seasons or deducing weather
indications is a very different thing from the science
of astronomy, which seeks to explain the heavenly
phenomena and their causes. The history of this
science, as of Greek philosophy in general, begins with
Thales.

The Ionian Greeks were in the most favourable position
for initiating philosophy. Foremost among the
Greeks in the love of adventure and the instinct of new
discovery (as is shown by their leaving their homes to
found settlements in distant lands), and fired, like all
Greeks, with a passion for knowledge, they needed little
impulse to set them on the road of independent thought
and speculation. This impulse was furnished by their
contact with two ancient civilisations, the Egyptian and
the Babylonian. Acquiring from them certain elementary
facts and rules in mathematics and astronomy which
had been handed down through the priesthood from remote
antiquity, they built upon them the foundation of the
science, as distinct from the mere routine, of the subjects
in question.

THALES.

Thales of Miletus (about 624–547 B.C.) was a man of
extraordinary versatility; philosopher, mathematician,
astronomer, statesman, engineer, and man of business,
he was declared one of the Seven Wise Men in 582–581
B.C. His propensity to star-gazing is attested by
the story of his having fallen into a well while watching
the stars, insomuch that (as Plato has it) he was rallied by
a clever and pretty maidservant from Thrace for being so
“eager to know what goes on in the heavens when he
could not see what was in front of him, nay at his very
feet”.

Thales’s claim to a place in the history of scientific
astronomy rests on one achievement attributed to him,
that of predicting an eclipse of the sun. The evidence
for this is fairly conclusive, though the accounts of it
differ slightly. Eudemus, the pupil of Aristotle, who
wrote histories of Greek geometry and astronomy, is
quoted by three different Greek writers as the authority
for the story. But there is testimony much earlier than
this. Herodotus, speaking of a war between the Lydians
and the Medes, says that, “when in the sixth year they
encountered one another, it fell out that, after they had
joined battle, the day suddenly turned into night. Now
that this change of day into night would occur was foretold
to the Ionians by Thales of Miletus, who fixed as
the limit of time this very year in which the change took
place.” Moreover Xenophanes, who was born some
twenty-three years before Thales’s death, is said to have
lauded Thales’s achievement; this would amount to
almost contemporary evidence.

Could Thales have known the cause of solar eclipses?
Aëtius (A.D. 100), the author of an epitome of an older
collection of the opinions of philosophers, says that
Thales was the first to declare that the sun is eclipsed
when the moon comes in a direct line below it, the image
of the moon then appearing on the sun’s disc as on
a mirror; he also associates Thales with Anaxagoras,
Plato, Aristotle, and the Stoics as holding that the moon
is eclipsed by reason of its falling into the shadow made
by the earth when the earth is between the sun and the
moon. But, as regards the eclipse of the moon, Thales
could not have given this explanation, because he held that
the earth (which he presumably regarded as a flat disc)
floated on the water like a log. And if he had given the
true explanation of a solar eclipse, it is impossible that
all the succeeding Ionian philosophers should have exhausted
their imaginations in other fanciful explanations
such as we find recorded.

The key to the puzzle may be afforded by the passage
of Herodotus according to which the prediction was a
rough one, only specifying that the eclipse would occur
within a certain year. The prediction was probably one
of the same kind as had long been made by the Chaldæans.
The Chaldæans, no doubt as the result of
observations continued through many centuries, had
discovered the period of 223 lunations after which lunar
eclipses recur. (This method would very often fail for
solar eclipses because no account was taken of parallax;
and Assyrian cuneiform inscriptions record failures as
well as successful predictions.) Thales, then, probably
learnt about the period of 223 lunations either in Egypt
or more directly through Lydia, which was an outpost of
Assyrio-Babylonian culture. If there happened to be
a number of possible solar eclipses in the year which
(according to Herodotus) Thales fixed for the eclipse,
he was, in using the Chaldæan rule, not taking an undue
risk; but it was great luck that the eclipse should
have been total. It seems practically certain that the
eclipse in question was that of the (Julian) 28th May,
585.

Thales, as we have seen, made the earth a circular
or cylindrical disc floating on the water like a log or
a cork and, so far as we can judge of his general conception
of the universe, he would appear to have regarded
it as a mass of water (that on which the earth
floats) with the heavens encircling it in the form of a
hemisphere and also bounded by the primeval water.
This view of the world has been compared with that
found in ancient Egyptian papyri. In the beginning
existed the Nū, a primordial liquid mass in the limitless
depths of which floated the germs of things. When the
sun began to shine, the earth was flattened out and the
water separated into two masses. The one gave rise
to the rivers and the ocean, the other, suspended above,
formed the vault of heaven, the waters above, on which
the stars and the gods, borne by an eternal current,
began to float. The sun, standing upright in his sacred
barque which had endured for millions of years, glides
slowly, conducted by an army of secondary gods, the
planets and the fixed stars. The assumption of an
upper and lower ocean is also old Babylonian (cf. the
division in Genesis 1. 7 of the waters which were under
the firmament from the waters which were above the
firmament).

It would follow from Thales’s general view of the
universe that the sun, moon and stars did not, between
their setting and rising again, continue their circular
path below the earth but (as with Anaximenes later)
moved laterally round the earth.

Thales’s further contributions to observational astronomy
may be shortly stated. He wrote two works On
the solstice and On the equinox, and he is said by Eudemus
to have discovered that “the period of the sun with
respect to the solstices is not always the same,” which
probably means that he discovered the inequality of the
four astronomical seasons. His division of the year into
365 days he probably learnt from the Egyptians. He
said of the Hyades that there are two, one north and the
other south. He observed the Little Bear and used
it as a means of finding the pole; he advised the Greeks
to follow the Phœnician plan of sailing by the Little
Bear in preference to their own habit of steering by the
Great Bear.

Limited as the certain contributions of Thales to
astronomy are, it became the habit of the Greek Doxographi,
or retailers of the opinions of philosophers, to
attribute to Thales, in common with other astronomers
in each case, a number of discoveries which were not
made till later. The following is a list, with (in brackets)
the names of the astronomers to whom the respective
discoveries may with most certainty be assigned:
(1) the fact that the moon takes its light from the sun
(Anaxagoras), (2) the sphericity of the earth (Pythagoras),
(3) the division of the heavenly sphere into five zones
(Pythagoras and Parmenides), (4) the obliquity of the
ecliptic (Œnopides of Chios), and (5) the estimate of
the sun’s apparent diameter as 1/720th of the sun’s circle
(Aristarchus of Samos).

ANAXIMANDER.

Anaximander (about 611–547 B.C.), a contemporary
and fellow-citizen of Thales, was a remarkably original
thinker. He was the first Greek philosopher who
ventured to put forward his views in a formal written
treatise. This was a work About Nature and was not
given to the world till he was about sixty-four years old.
His originality is illustrated by his theory of evolution.
According to him animals first arose from slime evaporated
by the sun; they lived in the sea and had
prickly coverings; men at first resembled fishes.

But his astronomical views were not less remarkable.
Anaximander boldly maintained that the earth is in
the centre of the universe, suspended freely and without
support, whereas Thales regarded it as resting on the
water and Anaximenes as supported by the air. It
remains in its position, said Anaximander, because it
is at an equal distance from all the rest of the heavenly
bodies. The earth was, according to him, cylinder-shaped,
round “like a stone pillar”; one of its two
plane faces is that on which we stand; its depth is
one-third of its breadth.

Anaximander postulated as his first principle, not
water (like Thales) or any of the elements, but the
Infinite; this was a substance, not further defined, from
which all the heavens and the worlds in them were
produced; according to him the worlds themselves were
infinite in number, and there were always some worlds
coming into being and others passing away ad infinitum.
The origin of the stars, and their nature, he explained
as follows. “That which is capable of begetting the
hot and the cold out of the eternal was separated off
during the coming into being of our world, and from
the flame thus produced a sort of sphere was made
which grew round the air about the earth as the bark
round the tree; then this sphere was torn off and became
enclosed in certain circles or rings, and thus were formed
the sun, the moon and the stars.” “The stars are produced
as a circle of fire, separated off from the fire in
the universe and enclosed by air. They have as vents
certain pipe-shaped passages at which the stars are seen.”
“The stars are compressed portions of air, in the shape
of wheels filled with fire, and they emit flames at some
point from small openings.” “The stars are borne
round by the circles in which they are enclosed.” “The
sun is a circle twenty-eight times (v. l. 27 times) the size
of the earth; it is like a wheel of a chariot the rim of
which is hollow and full of fire and lets the fire shine
out at a certain point in it through an opening like the
tube of a blow-pipe; such is the sun.” “The sun is
equal to the earth.” “The eclipses of the sun occur
through the opening by which the fire finds vent being
shut up.” “The moon is a circle nineteen times the
size of the earth; it is similar to a chariot-wheel the rim
of which is hollow and full of fire like the circle of the
sun, and it is placed obliquely like the other; it has one
vent like the tube of a blow-pipe; the eclipses of the
moon depend on the turnings of the wheel.” “The
moon is eclipsed when the opening in the rim of the
wheel is stopped up.” “The moon appears sometimes
as waxing, sometimes as waning, to an extent corresponding
to the closing or opening of the passages.”
“The sun is placed highest of all, after it the moon,
and under them the fixed stars and the planets.”

It has been pointed out that the idea of the formation
of tubes of compressed air within which the fire of each
star is shut up except for the one opening through
which the flame shows (like a gas-jet, as it were) is not
unlike Laplace’s hypothesis with reference to the origin
of Saturn’s rings. In any case it is a sufficiently original
conception.

When Anaximander says that the hoops carrying the
sun and moon “lie obliquely,” this is no doubt an
attempt to explain, in addition to the daily rotation,
the annual movement of the sun and the monthly movement
of the moon.

We have here too the first speculation about the sizes
and distances of the heavenly bodies. The sun is as
large as the earth. The ambiguity between the estimates
of the size of the sun’s circle as twenty-seven or twenty-eight
times the size of the earth suggests that it is
a question between taking the inner and outer circumferences
of the sun’s ring respectively, and a similar
ambiguity may account for the circle of the moon being
stated to be nineteen times, not eighteen times, the size
of the earth. No estimate is given of the distance
of the planets from the earth, but as, according to
Anaximander, they are nearer to the earth than the sun
and moon are, it is possible that, if a figure had been
stated, it would have been nine times the size of the
earth, in which case we should have had the numbers
9, 18, 27, three terms in arithmetical progression and
all of them multiples of 9, the square of 3. It seems
probable that these figures were not arrived at by any
calculation based on geometrical considerations, but that
we have here merely an illustration of the ancient cult
of the sacred numbers 3 and 9. Three is the sacred
number in Homer, 9 in Theognis. The cult of 3 and its
multiples 9 and 27 is found among the Aryans, then
among the Finns and Tartars and then again among
the Etruscans. Therefore Anaximander’s figures probably
say little more than what the Indians tell us,
namely, that three Vishnu-steps reach from earth to
heaven.

Anaximander is said to have been the first to discover
the gnomon (or sun-dial with a vertical needle). This
is, however, incorrect, for Herodotus says that the Greeks
learnt the use of the gnomon and the polos from the
Babylonians. Anaximander may have been the first
to introduce the gnomon into Greece. He is said to
have set it up in Sparta and to have shown on it “the
solstices, the times, the seasons, and the equinox”.

But Anaximander has another title to fame. He was
the first who ventured to draw a map of the inhabited
earth. The Egyptians indeed had drawn maps before,
but only of special districts. Anaximander boldly
planned out the whole world with “the circumference
of the earth and of the sea”. Hecataeus, a much-travelled
man, is said to have corrected Anaximander’s
map so that it became the object of general admiration.

ANAXIMENES.

With Anaximenes of Miletus (about 585–528/4 B.C.)
the earth is still flat like a table, but, instead of being
suspended freely without support as with Anaximander,
it is supported by the air, riding on it as it were. The
sun, moon and stars are all made of fire and (like the
earth) they ride on the air because of their breadth. The
sun is flat like a leaf. Anaximenes also held that the
stars are fastened on a crystal sphere like nails or studs.
It seems clear therefore that by the stars which “ride
on the air because of their breadth” he meant the planets
only. A like apparent inconsistency applies to the
motion of the stars. If the stars are fixed in the crystal
sphere like nails, they must be carried round complete
circles by the revolution of the sphere about a diameter.
Yet Anaximenes also said that the stars do not move
or revolve under the earth as some suppose, but round
the earth, just as a cap can be turned round on the head.
The sun is hidden from sight, not because it is under
the earth, but because it is covered by the higher parts
of the earth and because its distance from us is greater.
Aristotle adds the detail that the sun is carried round
the northern portion of the earth and produces night
because the earth is lofty towards the north. We must
again conclude that the stars which, like the sun and
moon, move laterally round the earth between their setting
and rising again are the planets, as distinct from the
fixed stars. It would therefore seem that Anaximenes
was the first to distinguish the planets from the fixed
stars in respect of their irregular movements. He improved
on Anaximander in that he relegated the fixed
stars to the region most distant from the earth.

Anaximenes was also original in holding that, in the
region occupied by the stars, bodies of an earthy nature
are carried round along with them. The object of these
invisible bodies of an earthy nature carried round along
with the stars is clearly to explain the eclipses and phases
of the moon. It was doubtless this conception which, in
the hands of Anaxagoras and others, ultimately led to
the true explanation of eclipses.

The one feature of Anaximenes’s system which was
destined to an enduring triumph was the conception of
the stars being fixed on a crystal sphere as in a rigid
frame. This really remained the fundamental principle
in all astronomy down to Copernicus.

PYTHAGORAS.

With Pythagoras and the Pythagoreans we come to
a different order of things. Pythagoras, born at Samos
about 572 B.C., is undoubtedly one of the greatest names
in the history of science. He was a mathematician of
brilliant achievements; he was also the inventor of the
science of acoustics, an astronomer of great originality,
a theologian and moral reformer, and the founder of a
brotherhood which admits comparison with the orders
of mediæval chivalry. Perhaps his most epoch-making
discovery was that of the dependence of musical tones
on numerical proportions, the octave representing the
proportion of 2 : 1 in length of string at the same tension,
the fifth 3 : 2, and the fourth 4 : 3. Mathematicians
know him as the reputed discoverer of the famous theorem
about the square on the hypotenuse of a right-angled triangle
(= Euclid I. 47); but he was also the first to make
geometry a part of a liberal education and to explore its
first principles (definitions, etc.).

Pythagoras is said to have been the first to maintain
that the earth is spherical in shape; on what ground, is
uncertain. One suggestion is that he may have argued
from the roundness of the shadow cast by the earth in
the eclipses of the moon; but Anaxagoras was the first
to give the true explanation of such eclipses. Probably
Pythagoras attributed spherical shape to the earth for
the mathematical or mathematico-æsthetical reason that
the sphere is the most beautiful of all solid figures. It
is probable too, and for the same reason, that Pythagoras
gave the same spherical shape to the sun and moon, and
even to the stars, in which case the way lay open for the
discovery of the true cause of eclipses and of the phases
of the moon. Pythagoras is also said to have distinguished
five zones in the earth. It is true that the first
declaration that the earth is spherical and that it has
five zones is alternatively attributed to Parmenides (born
perhaps about 516 or 514 B.C.), on the good authority
of Theophrastus. It is possible that, although Pythagoras
was the real author of these views, Parmenides was the
first to state them in public.

Pythagoras regarded the universe as living, intelligent,
spherical, enclosing the earth at the centre, and rotating
about an axis passing through the centre of the earth,
the earth remaining at rest.

He is said to have been the first to observe that the
planets have an independent motion of their own in a
direction opposite to that of the fixed stars, i.e. the daily
rotation. Alternatively with Parmenides he is said to
have been the first to recognise that the Morning and
the Evening Stars are one and the same. Pythagoras
is hardly likely to have known this as the result of observations
of his own; he may have learnt it from Egypt
or Chaldæa along with other facts about the planets.

PARMENIDES.

We have seen that certain views are alternatively
ascribed to Pythagoras and Parmenides. The system of
Parmenides was in fact a kind of blend of the theories
of Pythagoras and Anaximander. In giving the earth
spherical form with five zones he agreed with Pythagoras.
Pythagoras, however, made the spherical universe
rotate about an axis through the centre of the earth;
this implied that the universe is itself limited, but that
something exists round it, and in fact that beyond the
finite rotating sphere there is limitless void or empty
space. Parmenides, on the other hand, denied the existence
of the infinite void and was therefore obliged to
make his finite sphere motionless and to hold that its
apparent rotation is only an illusion.

In other portions of his system Parmenides followed
the lead of Anaximander. Like Anaximander (and
Democritus later) he argued that the earth remains in
the centre because, being equidistant from all points on
the sphere of the universe, it is in equilibrium and there
is no more reason why it should tend to move in one
direction than in another. Parmenides also had a
system of wreaths or bands round the sphere of the
universe which contained the sun, the moon and the
stars; the wreaths remind us of the hoops of Anaximander,
but their nature is different. The wreaths, according
to the most probable interpretation of the texts,
are, starting from the outside, (1) a solid envelope like
a wall; (2) a band of fire (the æther-fire); (3) mixed
bands, made up of light and darkness in combination,
which exhibit the phenomenon of “fire shining out here
and there,” these mixed bands including the Milky Way
as well as the sun, moon and planets; (4) a band of fire,
the inner side of which is our atmosphere, touching the
earth. Except that Parmenides placed the Morning Star
first in the æther and therefore above the sun, he did not
apparently differ from Anaximander’s view of the relative
distances of the heavenly bodies, according to which both
the planets and the other stars are all placed below the
sun and moon.

Two lines from Parmenides’s poem have been quoted to
show that he declared that the moon is illuminated by
the sun. The first line speaks of the moon as “a night-shining
foreign light wandering round the earth”; but,
even if the line is genuine, “foreign” need not mean
“borrowed”. The other line speaks of the moon as
“always fixing its gaze on the sun”; but, though this
states an observed fact, it is far from explaining the
cause. We have, moreover, positive evidence against the
attribution of the discovery of the opacity of the moon
to Parmenides. It is part of the connected prose
description of his system that the moon is a mixture of
air and fire, and in other passages we are told that he
held the moon to be of fire. Lastly, Plato speaks of
“the fact which Anaxagoras lately asserted, that the
moon has its light from the sun”. It seems impossible
that Plato would speak in such terms if the fact in
question had been stated for the first time either by
Parmenides or by the Pythagoreans.

ANAXAGORAS.

Anaxagoras, a man of science if ever there was one,
was born at Clazomenae in the neighbourhood of Smyrna
about 500 B.C. He neglected his possessions, which were
considerable, in order to devote himself to science. Someone
once asked him what was the object of being born,
and he replied, “The investigation of sun, moon and
heaven”. He took up his abode at Athens, where he
enjoyed the friendship of Pericles. When Pericles became
unpopular shortly before the outbreak of the Peloponnesian
war, he was attacked through his friends, and
Anaxagoras was accused of impiety for declaring that
the sun was a red-hot stone and the moon made of
earth. One account says that he was fined and banished;
another that he was imprisoned, and that it was intended
to put him to death, but that Pericles obtained his release;
he retired to Lampsacus, where he died at the
age of seventy-two.

One epoch-making discovery belongs to him, namely,
that the moon does not shine by its own light but receives
its light from the sun: Plato, as we have seen, is one
authority for this statement. Plutarch also in his De
facie in orbe lunae says, “Now when our comrade in his
discourse had expounded that proposition of Anaxagoras
that ‘the sun places the brightness in the moon,’ he was
greatly applauded”.

This discovery enabled Anaxagoras to say that “the
obscurations of the moon month by month were due to
its following the course of the sun by which it is illuminated,
and the eclipses of the moon were caused by its
falling within the shadow of the earth which then comes
between the sun and the moon, while the eclipses of the
sun were due to the interposition of the moon”. Anaxagoras
was therefore the first to give the true explanation
of eclipses. As regards the phases of the moon, his explanation
could only have been complete if he had known
that the moon is spherical; in fact, however, he considered
the earth (and doubtless the other heavenly bodies also)
to be flat. To his true theory of eclipses Anaxagoras
added the unnecessary assumption that the moon was
sometimes eclipsed by other earthy bodies below the
moon but invisible to us. In this latter assumption he
followed the lead of Anaximenes. The other bodies in
question were probably invented to explain why the
eclipses of the moon are seen oftener than those of the
sun.

Anaxagoras’s cosmogony contained some fruitful ideas.
According to him, the formation of the world began
with a vortex set up, in a portion of the mixed mass in
which “all things were together,” by Mind. This rotatory
movement began at one point and then gradually spread,
taking in wider and wider circles. The first effect was
to separate two great masses, one consisting of the rare,
hot, light, dry, called the æther, and the other of the
opposite categories and called air. The æther took the
outer place, the air the inner. Out of the air were
separated successively clouds, water, earth, and stones.
The dense, the moist, the dark and cold, and all the
heaviest things, collect in the centre as the result of the
circular motion, and it is from these elements when consolidated
that the earth is formed. But after this, “in
consequence of the violence of the whirling motion, the
surrounding fiery æther tore stones away from the earth
and kindled them into stars”. Anaxagoras conceived
therefore the idea of a centrifugal force, as distinct from
that of concentration brought about by the motion of
the vortex, and he assumed a series of projections or
“hurlings-off” of precisely the same kind as the theory
of Kant and Laplace assumed for the formation of the
solar system.

In other matters than the above Anaxagoras did not
make much advance on the crude Ionian theories. “The
sun is a red-hot mass or a stone on fire.” “It is larger
(or ‘many times larger’) than the Peloponnese.” He
considered that “the stars were originally carried round
(laterally) like a dome, the pole which is always visible
being thus vertically above the earth, and it was only
afterwards that their course became inclined”.

But he put forward a remarkable and original hypothesis
to explain the Milky Way. He thought the sun
to be smaller than the earth. Consequently, when the
sun in its revolution passes below the earth, the shadow
cast by the earth extends without limit. The trace of
this shadow on the heavens is the Milky Way. The
stars within this shadow are not interfered with by the
light of the sun, and we therefore see them shining;
those stars, on the other hand, which are outside the
shadow are overpowered by the light of the sun which
shines on them even during the night, so that we cannot
see them. Aristotle easily disposes of this theory by
observing that, the sun being much larger than the
earth, and the distance of the stars from the earth being
many times greater than the distance of the sun, the
sun’s shadow would form a cone with its vertex not
very far from the earth, so that the shadow of the earth,
which we call night, would not reach the stars at all.



EMPEDOCLES.

Empedocles of Agrigentum (about 494–434 B.C.) would
hardly deserve mention for his astronomy alone, so crude
were his views where they differed from those of his predecessors.
The earth, according to Empedocles, is kept
in its place by the swiftness of the revolution of the
heaven, just as we may swing a cup with water in it
round and round so that in some positions the top of
the cup may even be turned downwards without the
water escaping. Day and night he explained as follows.
Within the crystal sphere to which the fixed stars are
attached (as Anaximenes held), and filling it, is a sphere
consisting of two hemispheres, one of which is wholly of
fire and therefore light, while the other is a mixture of
air with a little fire, which mixture is darkness or night.
The revolution of these two hemispheres round the earth
produces at each point on its surface the succession of
day and night. Empedocles held the sun to be, not
fire, but a reflection of fire similar to that which takes
place from the surface of water, the fire of a whole
hemisphere of the world being bent back from the earth,
which is circular, and concentrated into the crystalline
sun which is carried round by the motion of the fiery
hemisphere.

Empedocles’s one important scientific achievement was
his theory that light travels and takes time to pass from
one point to another. The theory is alluded to by
Aristotle, who says that, according to Empedocles, the
light from the sun reaches the intervening space before
it reaches the eye or the earth; there was therefore a
time when the ray was not yet seen, but was being
transmitted through the medium.



THE PYTHAGOREANS.

We have seen that Pythagoras was the first to give
spherical form to the earth and probably to the heavenly
bodies generally, and to assign to the planets a revolution
of their own in a sense opposite to that of the daily
rotation of the fixed stars about the earth as centre.

But a much more remarkable development was to
follow in the Pythagorean school. This was nothing
less than the abandonment of the geocentric hypothesis
and the reduction of the earth to the status of a planet
like the others. The resulting system, known as the
Pythagorean, is attributed (on the authority probably of
Theophrastus) to Philolaus; but Diogenes Laertius and
Aëtius refer to one Hicetas of Syracuse in this connection;
Aristotle attributes the system to “the Pythagoreans”.
It is a partial anticipation of the theory of
Copernicus but differs from it in that the earth and the
planets do not revolve round the sun but about an
assumed “central fire,” and the sun itself as well as the
moon does the same. There were thus eight heavenly
bodies, in addition to the sphere of the fixed stars, all
revolving about the central fire. The number of revolutions
being thus increased to nine, the Pythagoreans
postulated yet another, making ten. The tenth body
they called the counter-earth, and its character and
object will appear from the following general description
of the system.

The universe is spherical in shape and finite in size.
Outside it is infinite void, which enables the universe to
breathe, as it were. At the centre is the central fire, the
Hearth of the Universe, called by various names such as
the Tower or Watch-tower of Zeus, the Throne of Zeus,
the Mother of the Gods. In this central fire is located
the governing principle, the force which directs the movement
and activity of the universe. The outside boundary
of the sphere is an envelope of fire; this is called
Olympus, and in this region the elements are found in
all their purity; below this is the universe. In the
universe there revolve in circles round the central fire
the following bodies: nearest to the central fire the
counter-earth which always accompanies the earth, then
the earth, then the moon, then the sun, next to the sun
the five planets, and last of all, outside the orbits of the
planets, the sphere of the fixed stars. The counter-earth,
which accompanies the earth but revolves in a
smaller orbit, is not seen by us because the hemisphere
on which we live is turned away from the counter-earth.
It follows that our hemisphere is always turned away
from the central fire, that is, it faces outwards from the
orbit towards Olympus (the analogy of the moon which
always turns one side towards us may have suggested
this); this involves a rotation of the earth about its axis
completed in the same time as it takes the earth to
complete a revolution about the central fire.

Although there was a theory that the counter-earth
was introduced in order to bring the number of the
moving bodies up to ten, the perfect number according
to the Pythagoreans, it is clear from a passage of
Aristotle that this was not the real reason. Aristotle
says, namely, that the eclipses of the moon were considered
to be due sometimes to the interposition of the
earth, sometimes to the interposition of the counter-earth.
Evidently therefore the purpose of the counter-earth
was to explain the frequency with which eclipses
of the moon occur.

The Pythagoreans held that the earth, revolving, like
one of the stars, about the central fire, makes night and
day according to its position relatively to the sun; it is
therefore day in that region which is lit up by the sun
and night in the cone formed by the earth’s shadow.
As the same hemisphere is always turned outwards, it
follows that the earth completes one revolution about
the central fire in a day and a night or in about twenty-four
hours. This would account for the apparent
diurnal rotation of the heavens from east to west; but
for parallax (of which, if we may believe Aristotle, the
Pythagoreans made light), it would be equivalent to the
rotation of the earth on its own axis once in twenty-four
hours. This would make the revolution of the
sphere of the fixed stars unnecessary. Yet the Pythagoreans
certainly gave some motion to the latter sphere.
What it was remains a puzzle. It cannot have been the
precession of the equinoxes, for that was first discovered
by Hipparchus (second century B.C.). Perhaps there
was a real incompatibility between the two revolutions
which was unnoticed by the authors of the system.

ŒNOPIDES OF CHIOS.

Œnopides of Chios (a little younger than Anaxagoras)
is credited with two discoveries. The first, which was
important, was that of the obliquity of the zodiac circle
or the ecliptic; the second was that of a Great Year,
which Œnopides put at fifty-nine years. He also (so
we are told) found the length of the year to be 365-22/59
days. He seems to have obtained this figure by a sort
of circular argument. Starting first with 365 days as
the length of a year and 29½ days as the length of the
lunar month, approximate figures known before his
time, he had to find the least integral number of complete
years containing an exact number of lunar months; this
is clearly fifty-nine years, which contain twice 365 or
730 lunar months. Œnopides seems by his knowledge
of the calendar to have determined the number of days
in 730 lunar months to be 21,557, and this number
divided by fifty-nine, the number of years, gives 365-22/59
as the number of days in the year.

PLATO.

We come now to Plato (427–347 B.C.). In the astronomy
of Plato, as we find it in the Dialogues, there is so
large an admixture of myth and poetry that it is impossible
to be sure what his real views were on certain points
of detail. In the Phædo we have certain statements about
the earth to the effect that it is of very large dimensions,
the apparent hollow (according to Plato) in which we
live being a very small portion of the whole, and that it
is in the middle of the heaven, in equilibrium, without
any support, by virtue of the uniformity in the substance
of the heaven. In the Republic we have a glimpse of
a more complete astronomical system. The outermost
revolution is that of the sphere of the fixed stars, which
carries round with it the whole universe including
the sun, moon and planets; the latter seven bodies,
while they are so carried round by the general rotation,
have slower revolutions of their own in addition, one
inside the other, these revolutions being at different
speeds but all in the opposite sense to the general rotation
of the universe. The quickest rotation is that of
the fixed stars and the universe, which takes place once
in about twenty-four hours. The slower speeds of the
sun, moon and planets are not absolute but relative to
the sphere of the fixed stars regarded as stationary.
The earth in the centre is unmoved; the successive
revolutions about it and within the sphere of the fixed
stars are (reckoning from the earth outwards) those
of the moon, the sun, Venus, Mercury, Mars, Jupiter,
Saturn; the speed of the moon is the quickest, that of
the sun the next quickest, while Venus and Mercury
travel with the sun and have the same speed, taking
about a year to describe their orbits; after these in speed
comes Mars, then Jupiter and, last and slowest of all,
Saturn. There is nothing said in the Republic about the
seven bodies revolving in a circle different from and
inclined to the equator of the sphere of the fixed stars;
that is, the obliquity of the ecliptic does not appear;
hence the standpoint of the whole system is that of
Pythagoras as distinct from that of the Pythagoreans.

Plato’s astronomical system is, however, most fully
developed in the Timæus. While other details remain
substantially the same, the zodiac circle in which the sun,
moon and planets revolve is distinguished from the
equator of the sphere of the fixed stars. The latter is
called the circle of the Same, the former that of the
Other, and we are told (quite correctly) that, since the
revolution of the universe in the circle of the Same
carries all the other revolutions with it, the effect on
each of the seven bodies is to turn their actual motions
in space into spirals. There is a difficulty in interpreting
a phrase in Plato’s description which says that Venus
and Mercury, though moving in a circle having equal
speed with the sun, “have the contrary tendency to it”.
Literally this would seem to mean that Venus and
Mercury describe their circles the opposite way to the
sun, but this is so contradicted by observation that
Plato could hardly have maintained it; hence the words
have been thought to convey a vague reference to the
apparent irregularities in the motion of Venus and
Mercury, their standings-still and retrogradations.

But the most disputed point in the system is the part
assigned in it to the earth. An expression is used with
regard to its relation to the axis of the heavenly sphere
which might mean either (1) that it is wrapped or
globed about that axis but without motion, or (2) that
it revolves round the axis. If the word means revolving
about the axis of the sphere, the revolution would be
either (a) rotation about its own axis supposed to be
identical with that of the sphere, or (b) revolution about
the axis of the heavenly sphere in the same way that
the sun, moon and planets revolve about an axis
obliquely inclined to that axis. But (a) if the earth
rotated about its own axis, this would make unnecessary
the rotation of the sphere of the fixed stars once in
twenty-four hours, which, however, is expressly included
as part of the system. The hypothesis (b) would make
the system similar to the Pythagorean except that the
earth would revolve about the axis of the heavenly
sphere instead of round the central fire. The supporters
of this hypothesis cite two passages of Plutarch to the
effect that Plato was said in his old age to have repented
of having given the earth the middle place in the
universe instead of placing it elsewhere and giving the
middle and chiefest place to some worthier occupant.
It is a sufficient answer to this argument that, if Plato
really meant in the passage of the Timæus to say
that the earth revolves about the axis of the heavenly
sphere, he had nothing to repent of. We must therefore,
for our part, conclude that in his written Dialogues Plato
regarded the earth as at rest in the centre of the universe.

We have it on good authority that Plato set it as
a problem to all earnest students “to find what are the
uniform and ordered movements by the assumption
of which the apparent movements of the planets can
be accounted for”. The same authority adds that
Eudoxus was the first to formulate a theory with this
object; and Heraclides of Pontus followed with an
entirely new hypothesis. Both were pupils of Plato
and, in so far as the statement of his problem was a
stimulus to these speculations, he rendered an important
service to the science of astronomy.



EUDOXUS, CALLIPPUS, ARISTOTLE.

Eudoxus of Cnidos (about 408–355 B.C.) was one
of the very greatest of the Greek mathematicians. He
was the discoverer and elaborator of the great theory
of proportion applicable to all magnitudes whether
commensurable or incommensurable which is given in
Euclid’s Book V. He was also the originator of
the powerful method of exhaustion used by all later
Greek geometers for the purpose of finding the areas
of curves and the volumes of pyramids, cones, spheres
and other curved surfaces. It is not therefore surprising
that he should have invented a remarkable geometrical
hypothesis for explaining the irregular movements of the
planets. The problem was to find the necessary number
of circular motions which by their combination would
produce the motions of the planets as actually observed,
and in particular the variations in their apparent speeds,
their stations and retrogradations and their movements
in latitude. This Eudoxus endeavoured to do by combining
the motions of several concentric spheres, one
inside the other, and revolving about different axes, each
sphere revolving on its own account but also being carried
round bodily by the revolution of the next sphere
encircling it. We are dependent on passages from
Aristotle and Simplicius for our knowledge of Eudoxus’s
system, which he had set out in a work On Speeds, now
lost. Eudoxus assumed three revolving spheres for
producing the apparent motions of the sun and moon
respectively, and four for that of each of the planets.
In his hypothesis for the sun he seems deliberately to
have ignored the discovery made by Meton and Euctemon
some sixty or seventy years before that the sun does not
take the same time to describe the four quadrants of
its orbit between the equinoctial and solstitial points.


It should be observed that the whole hypothesis of
the concentric spheres is pure geometry, and there is
no mechanics in it. We will shortly describe the
arrangement of the four spheres which by their revolution
produced the motion of a planet. The first and
outermost sphere produced the daily rotation in twenty-four
hours; the second sphere revolved about an axis
perpendicular to the plane of the zodiac or ecliptic,
thereby producing the motion along the zodiac “in the
respective periods in which the planets appear to describe
the zodiac circle,” i.e. in the case of the superior planets,
the sidereal periods of revolution, and in the case of
Mercury and Venus (on a geocentric system) one year.
The third sphere had its poles at two opposite points
on the zodiac circle, the poles being carried round in
the motion of the second sphere; the revolution of the
third sphere about the axis connecting the two poles was
again uniform and took place in a period equal to the
synodic period of the planet, or the time elapsing between
two successive oppositions or conjunctions with the sun.

The poles of the third sphere were different for all the
planets, except that for Mercury and Venus they were the
same. On the surface of the third sphere the poles of
the fourth sphere were fixed, and its axis of revolution
was inclined to that of the former at an angle constant
for each planet but different for the different planets. The
planet was fixed at a point on the equator of the fourth
sphere. The third and fourth spheres together cause
the planet’s movement in latitude. Simplicius explains
clearly the effect of these two rotations. If, he says, the
planet had been on the third sphere (by itself), it would
actually have arrived at the poles of the zodiac circle;
but, as things are, the fourth sphere, which turns about
the poles of the inclined circle carrying the planet and
rotates in the opposite sense to the third, i.e. from east
to west, but in the same period, will prevent any considerable
divergence on the part of the planet from the
zodiac circle, and will cause the planet to describe about
this same zodiac circle the curve called by Eudoxus the
hippopede (horse-fetter), so that the breadth of this curve
will be the maximum amount of the apparent deviation
of the planet in latitude. The curve in question is an
elongated figure-of-eight lying along and bisected by the
zodiac circle. The motion then round this figure-of-eight
combined with the motion in the zodiac circle
produces the acceleration and retardation of the motion
of the planet, causing the stations and retrogradations.
Mathematicians will appreciate the wonderful ingenuity
and beauty of the construction.

Eudoxus spent sixteen months in Egypt about
381–380 B.C., and, while there, he assimilated the
astronomical knowledge of the priests of Heliopolis and
himself made observations. The Observatory between
Heliopolis and Cercesura used by him was still pointed
out in Augustus’s time; he also had one built at Cnidos.
He wrote two books entitled respectively the Mirror
and the Phænomena; the poem of Aratus was, so far
as verses 19–732 are concerned, drawn from the
Phænomena of Eudoxus. He is also credited with the
invention of the arachne (spider’s web) which, however,
is alternatively attributed to Apollonius, and which seems
to have been a sun-clock of some kind.

Eudoxus’s system of concentric spheres was improved
upon by Callippus (about 370–300 B.C.), who added two
more spheres for the sun and the moon, and one more
in the case of each of the three nearer planets, Mercury,
Venus and Mars. The two additional spheres in the
case of the sun were introduced in order to account for
the unequal motion of the sun in longitude; and the
purpose in the case of the moon was presumably similar.
Callippus made the length of the seasons, beginning
with the vernal equinox, ninety-four, ninety-two, eighty-nine
and ninety days respectively, figures much more
accurate than those given by Euctemon a hundred years
earlier, which were ninety-three, ninety, ninety and
ninety-two days respectively.

With Callippus as well as Eudoxus the system of
concentric spheres was purely geometrical. Aristotle
(384–322 B.C.) thought it necessary to alter it in a
mechanical sense; he made the spheres into spherical
shells actually in contact with one another, and this
made it almost necessary, instead of having independent
sets of spheres, one set for each planet, to make all the
sets part of one continuous system of spheres. For this
purpose he assumed sets of reacting spheres between
successive sets of the original spheres. E.g. Saturn
being carried by a set of four spheres, he had three reacting
spheres to neutralise the last three, in order to restore
the outermost sphere to act as the first of the four spheres
producing the motion of the next lower planet, Jupiter,
and so on. The change was hardly an improvement.

Aristotle’s other ideas in astronomy do not require
detailed notice, except his views about the earth. Although
he held firmly to the old belief that the earth
is in the centre and remains motionless, he was clear that
its shape (like that of the stars and the universe) is
spherical, and he had arrived at views about its size
sounder than those of Plato. In support of the spherical
shape of the earth he used some good arguments based
on observation. (1) In partial eclipses of the moon the
line separating the dark and bright portions is always
circular—unlike the line of demarcation in the phases
of the moon which may be straight. (2) Certain stars
seen above the horizon in Egypt and in Cyprus are not
visible further north, and, on the other hand, certain
stars set there which in more northern latitudes remain
always above the horizon. As there is so perceptible
a change of horizon between places so near to each
other, it follows not only that the earth is spherical but
also that it is not a very large sphere. Aristotle adds
that people are not improbably right when they say that
the region about the Pillars of Heracles is joined on to
India, one sea connecting them. He quotes a result
arrived at by the mathematicians of his time, that the
circumference of the earth is 400,000 stades. He is
clear that the earth is much smaller than some of the
stars, but that the moon is smaller than the earth.

The systems of concentric spheres were not destined to
hold their ground for long. In these systems the sun,
moon and planets were of necessity always at the same
distances from the earth respectively. But it was soon
recognised that they did not “save the phenomena,”
since it was seen that the planets appeared to be at one
time nearer and at another time further off. Autolycus
of Pitane (who flourished about 310 B.C.) knew this and
is said to have tried to explain it; indeed it can hardly
have been unknown even to the authors of the concentric
theory themselves, for Polemarchus of Cyzicus, almost
contemporary with Eudoxus, is said to have been aware
of it but to have minimised the difficulty because he preferred
the hypothesis of the concentric spheres to others.

Development along the lines of Eudoxus’s theory being
thus blocked, the alternative was open of seeing whether
any modification of the Pythagorean system would give
better results. We actually have evidence of revisions
of the Pythagorean theory. The first step was to get
rid of the counter-earth, and some Pythagoreans did this
by identifying the counter-earth with the moon. We
hear too of a Pythagorean system in which the central
fire was not outside the earth but in the centre of the
earth itself. The descriptions of this system rather indicate
that in it the earth was supposed to be at rest,
without any rotation, in the centre of the universe. This
was practically a return to the standpoint of Pythagoras
himself. But it is clear that, if the system of Philolaus
(or Hicetas) be taken and the central fire be transferred
to the centre of the earth (the counter-earth being also
eliminated), and if the movements of the earth, sun,
moon and planets round the centre be retained without
any modification save that which is mathematically involved
by the transfer of the central fire to the centre of
the earth, the daily revolution of the earth about the
central fire is necessarily transformed into a rotation
of the earth about its own axis in about twenty-four
hours.

HERACLIDES OF PONTUS.

All authorities agree that the theory of the daily rotation
of the earth about its own axis was put forward by
Heraclides of Pontus (about 388–315 B.C.), a pupil of
Plato; with him in some accounts is associated the name
of one Ecphantus, a Pythagorean. We are told that
Ecphantus asserted “that the earth, being in the centre
of the universe, moves about its own centre in an eastward
direction,” and that “Heraclides of Pontus and
Ecphantus the Pythagorean make the earth move, not
in the sense of translation, but by way of turning as on
an axle, like a wheel, from west to east, about its own
centre”.

Heraclides was born at Heraclea in Pontus. He went
to Athens not later than 364 B.C., and there met Speusippus,
who introduced him into the school of Plato. On
the death of Speusippus (then at the head of the school)
in 338, Xenocrates was elected to succeed him; at this
election Heraclides was also a candidate and was only
defeated by a few votes. He was the author of dialogues,
brilliant and original, on all sorts of subjects,
which were much read and imitated at Rome, e.g. by
Varro and Cicero. Two of them “On Nature” and
“On the Heavens” may have dealt with astronomy.

In his view that the earth rotates about its own axis
Heraclides is associated with Aristarchus of Samos;
thus Simplicius says: “There have been some, like Heraclides
of Pontus and Aristarchus, who supposed that the
phenomena can be saved if the heaven and the stars are
at rest while the earth moves about the poles of the
equinoctial circle from the west to the east, completing
one revolution each day, approximately; the ‘approximately’
is added because of the daily motion of the sun to
the extent of one degree”.

Heraclides made another important advance towards
the Copernican hypothesis. He discovered the fact that
Venus and Mercury revolve about the sun as centre.
So much is certain; but a further question naturally
arises. Having made Venus and Mercury revolve round
the sun like satellites, did Heraclides proceed to draw the
same inference with regard to the other, the superior,
planets? The question is interesting because, had it
been laid down that all the five planets alike revolve
round the sun, the combination of this hypothesis with
Heraclides’s assumption that the earth rotates about its
own axis in twenty-four hours would have amounted
to an anticipation of the system of Tycho Brahe, but
with the improvement of the substitution of the daily
rotation of the earth for the daily revolution of the
whole system about the earth supposed at rest. Schiaparelli
dealt with the question in two papers entitled
I precursori di Copernico nell’ antichità (1873), and Origine
del sistema planetario eliocentrico presso i Greci (1898).
Schiaparelli tried to show that Heraclides did arrive at the
conclusion that the superior planets as well as Mercury
and Venus revolve round the sun; but most persons will
probably agree that his argument is not convincing. The
difficulties seem too great. The circles described by
Mercury and Venus about the sun are relatively small
circles and are entirely on one side of the earth. But
when the possibility of, say, Mars revolving about the
sun came to be considered, it would be at once obvious
that the precise hypothesis adopted for Mercury and
Venus would not apply. It would be seen that Mars
is brightest when it occupies a position in the zodiac
opposite to the sun; it must therefore be nearest to the
earth at that time. Consequently the circle described
by Mars, instead of being on one side of the earth, must
comprehend the earth which is inside it. Whereas
therefore the circles described by Mercury and Venus
were what the Greeks called epicycles about a material
centre, the sun (itself moving in a circle round the earth),
what was wanted in the case of Mars (if the circle described
by Mars was to have the sun for centre) was
what the Greeks called an eccentric circle, with a centre
which itself moves in a circle about the earth, and with
a radius greater than that of the sun’s orbit. Though the
same motion could have been produced by an epicycle,
the epicycle would have had to have a mathematical
point (not the material sun) as centre. But the idea
of using non-material points as centres for epicycles was
probably first thought of, at a later stage, by some of
the great mathematicians such as Apollonius of Perga
(about 265–190 B.C.).

Not only does Schiaparelli maintain that the complete
(but improved) Tychonic hypothesis was put forward by
Heraclides or at least in Heraclides’s time; he goes
further and makes a still greater claim on behalf of
Heraclides, namely, that it was he, and not Aristarchus of
Samos, who first stated as a possibility the Copernican
hypothesis. Now it was much to discover, as Heraclides
did, that the earth rotates about its own axis and that
Mercury and Venus revolve round the sun like satellites;
and it seems a priori incredible that one man should not
only have reached, and improved upon, the hypothesis
of Tycho Brahe but should also have suggested the
Copernican hypothesis. It is therefore necessary to
examine briefly the evidence on which Schiaparelli relied.
His argument rests entirely upon one passage, a sentence
forming part of a quotation from a summary by Geminus
of the Meteorologica of Posidonius, which Simplicius copied
from Alexander Aphrodisiensis and embodied in his
commentary on the Physics of Aristotle. The sentence
in question, according to the reading of the MSS., is as
follows: “Hence we actually find a certain person,
Heraclides of Pontus, coming forward and saying that,
even on the assumption that the earth moves in a certain
way, while the sun is in a certain way at rest, the
apparent irregularity with reference to the sun can be
saved”. (The preceding sentence is about possible
answers to the question, why do the sun, the moon and
the planets appear to move irregularly? and says, “we may
answer that, if we assume that their orbits are eccentric
circles or that the stars describe an epicycle, their
apparent irregularity will be saved, and it will be
necessary to go further and examine in how many
different ways it is possible for these phenomena to be
brought about”.)

Now it is impossible that Geminus himself can have
spoken of an astronomer of the distinction of Heraclides
as “a certain Heraclides of Pontus”. Consequently
there have been different attempts made to emend the
reading of the MSS. All the emendations proposed are
open to serious objections, and we are thrown back on
the reading of the MSS. Now it “leaps to the eyes”
that, if the name of Heraclides of Pontus is left out,
everything is in order. “This is why one astronomer
has actually suggested that, by assuming the earth to
move in a certain way, and the sun to be in a certain
way at rest, the apparent irregularity with reference
to the sun will be saved.” This seems to be the solution
of the puzzle suggested by the ordinary principles of
textual criticism, and is so simple and natural that it
will surely carry conviction to the minds of unbiassed
persons. Geminus, in fact, mentioned no name but
meant Aristarchus of Samos, and some scholiast, remembering
that Heraclides had given a certain motion
to the earth (namely, rotation about its axis), immediately
thought of Heraclides and inserted his name in the
margin, from which it afterwards crept into the text.

It is only necessary to add that Archimedes is not
likely to have been wrong when he attributed the first
suggestion of the Copernican hypothesis to Aristarchus
of Samos in express terms; and this is confirmed by
another positive statement by Aëtius, already quoted,
that “Heraclides of Pontus and Ecphantus the Pythagorean
made the earth move, not in the sense of translation,
but with a movement of rotation”.






PART II.

ARISTARCHUS OF SAMOS.



We are told that Aristarchus of Samos was a pupil of
Strato of Lampsacus, a natural philosopher of originality,
who succeeded Theophrastus as head of the Peripatetic
school in 288 or 287 B.C., and held that position for
eighteen years. Two other facts enable us to fix
Aristarchus’s date approximately. In 281–280 he made
an observation of the summer solstice; and the book in
which he formulated his heliocentric hypothesis was
published before the date of Archimedes’s Psammites or
Sandreckoner, a work written before 216 B.C. Aristarchus
therefore probably lived circa 310–230 B.C., that
is, he came about seventy-five years later than Heraclides
and was older than Archimedes by about twenty-five
years.

Aristarchus was called “the mathematician,” no doubt
in order to distinguish him from the many other persons
of the same name; Vitruvius includes him among the
few great men who possessed an equally profound knowledge
of all branches of science, geometry, astronomy,
music, etc. “Men of this type are rare, men such as
were in times past Aristarchus of Samos, Philolaus and
Archytas of Tarentum, Apollonius of Perga, Eratosthenes
of Cyrene, Archimedes and Scopinas of Syracuse,
who left to posterity many mechanical and gnomonic
appliances which they invented and explained on
mathematical and natural principles.” That Aristarchus
was a very capable geometer is proved by his extant
book, On the sizes and distances of the sun and moon,
presently to be described. In the mechanical line he is
credited with the invention of an improved sun-dial, the
so-called scaphe, which had not a plane but a concave
hemispherical surface, with a pointer erected vertically
in the middle, throwing shadows and so enabling the
direction and height of the sun to be read off by means
of lines marked on the surface of the hemisphere. He
also wrote on vision, light, and colours. His views on
the latter subjects were no doubt largely influenced by
the teaching of Strato. Strato held that colours were
emanations from bodies, material molecules as it were,
which imparted to the intervening air the same colour
as that possessed by the body. Aristarchus said that
colours are “shapes or forms stamping the air with
impressions like themselves as it were,” that “colours in
darkness have no colouring,” and that “light is the
colour impinging on a substratum”.

THE HELIOCENTRIC HYPOTHESIS.

There is no doubt whatever that Aristarchus put
forward the heliocentric hypothesis. Ancient testimony
is unanimous on the point, and the first witness is Archimedes
who was a younger contemporary of Aristarchus,
so that there is no possibility of a mistake. Copernicus
himself admitted that the theory was attributed to
Aristarchus, though this does not seem to be generally
known. Copernicus refers in two passages of his work,
De revolutionibus caelestibus, to the opinions of the
ancients about the motion of the earth. In the dedicatory
letter to Pope Paul III he mentions that he first learnt
from Cicero that one Nicetas (i.e. Hicetas) had attributed
motion to the earth, and that he afterwards read in
Plutarch that certain others held that opinion; he then
quotes the Placita philosophorum according to which
“Philolaus the Pythagorean asserted that the earth moved
round the fire in an oblique circle in the same way as the
sun and moon”. In Book I. c. 5 of his work Copernicus
alludes to the views of Heraclides, Ecphantus, and Hicetas,
who made the earth rotate about its own axis, and then goes
on to say that it would not be very surprising if any one
should attribute to the earth another motion besides rotation,
namely, revolution in an orbit in space: “atque etiam
(terram) pluribus motibus vagantem et unam ex astris
Philolaus Pythagoricus sensisse fertur, Mathematicus non
vulgaris”. Here, however, there is no question of the
earth revolving round the sun, and there is no mention
of Aristarchus. But Copernicus did mention the theory
of Aristarchus in a passage which he afterwards suppressed:
“Credibile est hisce similibusque causis
Philolaum mobilitatem terrae sensisse, quod etiam
nonnulli Aristarchum Samium ferunt in eadem fuisse
sententia”.

It is desirable to quote the whole passage of Archimedes
in which the allusion to Aristarchus’s heliocentric
hypothesis occurs, in order to show the whole context.

“You are aware [‘you’ being King Gelon] that
‘universe’ is the name given by most astronomers to the
sphere the centre of which is the centre of the earth,
while its radius is equal to the straight line between the
centre of the sun and the centre of the earth. This is
the common account as you have heard from astronomers.
But Aristarchus brought out a book consisting
of certain hypotheses, wherein it appears, as a consequence
of the assumptions made, that the universe is many
times greater than the ‘universe’ just mentioned. His
hypotheses are that the fixed stars and the sun remain unmoved,
that the earth revolves about the sun in the circumference
of a circle, the sun lying in the middle of the orbit,
and that the sphere of the fixed stars, situated about the
same centre as the sun, is so great that the circle in
which he supposes the earth to revolve bears such a
proportion to the distance of the fixed stars as the centre
of the sphere bears to its surface.”

The heliocentric hypothesis is here stated in language
which leaves no room for doubt about its meaning. The
sun, like the fixed stars, remains unmoved and forms
the centre of a circular orbit in which the earth moves
round it; the sphere of the fixed stars has its centre at
the centre of the sun.

We have further evidence in a passage of Plutarch’s
tract, On the face in the moon’s orb: “Only do not, my
dear fellow, enter an action for impiety against me in
the style of Cleanthes, who thought it was the duty of
Greeks to indict Aristarchus on the charge of impiety
for putting in motion the Hearth of the Universe, this
being the effect of his attempt to save the phenomena
by supposing the heaven to remain at rest and the earth
to revolve in an oblique circle, while it rotates, at the
same time, about its own axis”.

Here we have the additional detail that Aristarchus
followed Heraclides in attributing to the earth the daily
rotation about its axis; Archimedes does not state this
in so many words, but it is clearly involved by his remark
that Aristarchus supposed the fixed stars as well
as the sun to remain unmoved in space. A tract
“Against Aristarchus” is mentioned by Diogenes
Laertius among Cleanthes’s works; and it was evidently
published during Aristarchus’s lifetime (Cleanthes died
about 232 B.C.).

We learn from another passage of Plutarch that the
hypothesis of Aristarchus was adopted, about a century
later, by Seleucus, of Seleucia on the Tigris, a Chaldæan
or Babylonian, who also wrote on the subject of the
tides about 150 B.C. The passage is interesting because
it also alludes to the doubt about Plato’s final views.
“Did Plato put the earth in motion as he did the sun,
the moon and the five planets which he called the
‘instruments of time’ on account of their turnings, and
was it necessary to conceive that the earth ‘which is
globed about the axis stretched from pole to pole
through the whole universe’ was not represented as
being (merely) held together and at rest but as turning
and revolving, as Aristarchus and Seleucus afterwards
maintained that it did, the former of whom stated this
as only a hypothesis, the latter as a definite opinion?”

No one after Seleucus is mentioned by name as
having accepted the doctrine of Aristarchus and, if
other Greek astronomers refer to it, they do so only to
denounce it. Hipparchus, himself a contemporary of
Seleucus, definitely reverted to the geocentric system,
and it was doubtless his authority which sealed the
fate of the heliocentric hypothesis for so many centuries.

The reasons which weighed with Hipparchus were
presumably the facts that the system in which the earth
revolved in a circle of which the sun was the exact
centre failed to “save the phenomena,” and in particular
to account for the variations of distance and the irregularities
of the motions, which became more and more
patent as methods of observation improved; that, on
the other hand, the theory of epicycles did suffice to
represent the phenomena with considerable accuracy;
and that the latter theory could be reconciled with the
immobility of the earth.

ON THE APPARENT DIAMETER OF THE SUN.

Archimedes tells us in the same treatise that “Aristarchus
discovered that the sun’s apparent size is about
1/720th part of the zodiac circle”; that is to say, he observed
that the angle subtended at the earth by the diameter
of the sun is about half a degree.

ON THE SIZES AND DISTANCES OF THE SUN AND MOON.

Archimedes also says that, whereas the ratio of the
diameter of the sun to that of the moon had been
estimated by Eudoxus at 9 : 1 and by his own father
Phidias at 12 : 1, Aristarchus made the ratio greater than
18 : 1 but less than 20 : 1. Fortunately we possess in
Greek the short treatise in which Aristarchus proved
these conclusions; on the other matter of the apparent
diameter of the sun Archimedes’s statement is our only
evidence.

It is noteworthy that in Aristarchus’s extant treatise
On the sizes and distances of the sun and moon there
is no hint of the heliocentric hypothesis, while the
apparent diameter of the sun is there assumed to be,
not ½°, but the very inaccurate figure of 2°. Both
circumstances are explained if we assume that the
treatise was an early work written before the hypotheses
described by Archimedes were put forward. In the
treatise Aristarchus finds the ratio of the diameter of the
sun to the diameter of the earth to lie between 19 : 3 and
43 : 6; this would make the volume of the sun about
300 times that of the earth, and it may be that the great
size of the sun in comparison with the earth, as thus
brought out, was one of the considerations which led
Aristarchus to place the sun rather than the earth in the
centre of the universe, since it might even at that day
seem absurd to make the body which was so much
larger revolve about the smaller.

There is no reason to doubt that in his heliocentric
system Aristarchus retained the moon as a satellite of
the earth revolving round it as centre; hence even in his
system there was one epicycle.

The treatise On sizes and distances being the only
work of Aristarchus which has survived, it will be fitting
to give here a description of its contents and special
features.

The style of Aristarchus is thoroughly classical as
befits an able geometer intermediate in date between
Euclid and Archimedes, and his demonstrations are
worked out with the same rigour as those of his predecessor
and successor. The propositions of Euclid’s
Elements are, of course, taken for granted, but other
things are tacitly assumed which go beyond what we
find in Euclid. Thus the transformations of ratios
defined in Euclid, Book V, and denoted by the terms
inversely, alternately, componendo, convertendo, etc., are
regularly used in dealing with unequal ratios, whereas
in Euclid they are only used in proportions, i.e. cases of
equality of ratios. But the propositions of Aristarchus
are also of particular mathematical interest because the
ratios of the sizes and distances which have to be
calculated are really trigonometrical ratios, sines, cosines,
etc., although at the time of Aristarchus trigonometry
had not been invented, and no reasonably close approximation
to the value of π, the ratio of the circumference
of any circle to its diameter, had been made
(it was Archimedes who first obtained the approximation
22/7). Exact calculation of the trigonometrical ratios
being therefore impossible for Aristarchus, he set
himself to find upper and lower limits for them, and
he succeeded in locating those which emerge in his
propositions within tolerably narrow limits, though not
always the narrowest within which it would have been
possible, even for him, to confine them. In this species
of approximation to trigonometry he tacitly assumes
propositions comparing the ratio between a greater and
a lesser angle in a figure with the ratio between two
straight lines, propositions which are formally proved by
Ptolemy at the beginning of his Syntaxis. Here again
we have proof that textbooks containing such propositions
existed before Aristarchus’s time, and probably
much earlier, although they have not survived.

Aristarchus necessarily begins by laying down, as the
basis for his treatise, certain assumptions. They are six
in number, and he refers to them as hypotheses. We
cannot do better than quote them in full, along with
the sentences immediately following, in which he states
the main results to be established in the treatise:—

[Hypotheses.]

1. That the moon receives its light from the sun.

2. That the earth is in the relation of a point and centre
to the sphere in which the moon moves.

3. That, when the moon appears to us halved, the great
circle which divides the dark and the bright portions of the
moon is in the direction of our eye.

4. That, when the moon appears to us halved, its distance
from the sun is then less than a quadrant by one-thirtieth
of a quadrant.

5. That the breadth of the (earth’s) shadow is (that)
of two moons.

6. That the moon subtends one-fifteenth part of a sign
of the zodiac.

We are now in a position to prove the following
propositions:—

1. The distance of the sun from the earth is greater
than eighteen times, but less than twenty times, the
distance of the moon (from the earth); this follows from
the hypothesis about the halved moon.

2. The diameter of the sun has the same ratio (as aforesaid)
to the diameter of the moon.


3. The diameter of the sun has to the diameter of the
earth a ratio greater than that which 19 has to 3, but
less than that which 43 has to 6; this follows from the
ratio thus discovered between the distances, the hypothesis
about the shadow, and the hypothesis that the
moon subtends one-fifteenth part of a sign of the zodiac.

The first assumption is Anaxagoras’s discovery. The
second assumption is no doubt an exaggeration; but it
is made in order to avoid having to allow for the fact
that the phenomena as seen by an observer on the surface
of the earth are slightly different from what would be
seen if the observer’s eye were at the centre of the earth.
Aristarchus, that is, takes the earth to be like a point
in order to avoid the complication of parallax.

The meaning of the third hypothesis is that the
plane of the great circle in question passes through the
point where the eye of the observer is situated; that is
to say, we see the circle end on, as it were, and it looks
like a straight line.

Hypothesis 4. If S be the sun, M the moon and
E the earth, the triangle SME is, at the moment when
the moon appears to us halved, right-angled at M; and
the hypothesis states that the angle at E in this triangle
is 87°, or, in other words, the angle MSE, that is, the
angle subtended at the sun by the line joining M to E,
is 3°. These estimates are decidedly inaccurate, for the
true value of the angle MES is 89° 50′, and that of the
angle MSE is therefore 10′. There is nothing to show
how Aristarchus came to estimate the angle MSE at 3°,
and none of his successors seem to have made any
direct estimate of the size of the angle.

The assumption in Hypothesis 5 was improved upon
later. Hipparchus made the ratio of the diameter of the
circle of the earth’s shadow to the diameter of the moon
to be, not 2, but 2½ at the moon’s mean distance at the
conjunctions; Ptolemy made it, at the moon’s greatest
distance, to be inappreciably less than 2⅗.

The sixth hypothesis states that the diameter of the
moon subtends at our eye an angle which is 1/15th of 30°,
i.e. 2°, whereas Archimedes, as we have seen, tells us
that Aristarchus found the angle subtended by the
diameter of the sun to be ½° (Archimedes in the same
tract describes a rough instrument by means of which
he himself found that the diameter of the sun subtended
an angle less than 1/164th, but greater than 1/200th of a right
angle). Even the Babylonians had, many centuries
before, arrived at 1° as the apparent angular diameter
of the sun. It is not clear why Aristarchus took a value
so inaccurate as 2°. It has been suggested that he
merely intended to give a specimen of the calculations
which would have to be made on the basis of more exact
experimental observations, and to show that, for the
solution of the problem, one of the data could be chosen
almost arbitrarily, by which proceeding he secured himself
against certain objections which might have been
raised. Perhaps this is too ingenious, and it may be
that, in view of the difficulty of working out the geometry
if the two angles in question are very small, he took 3°
and 2° as being the smallest with which he could conveniently
deal. Certain it is that the method of Aristarchus
is perfectly correct and, if he could have substituted
the true values (as we know them to-day) for
the inaccurate values which he assumes, and could have
carried far enough his geometrical substitute for trigonometry,
he would have obtained close limits for the
true sizes and distances.

The book contains eighteen propositions. Prop. 1
proves that we can draw one cylinder to touch two equal
spheres, and one cone to touch two unequal spheres, the
planes of the circles of contact being at right angles to the
axis of the cylinder or cone. Next (Prop. 2) it is shown
that, if a lesser sphere be illuminated by a greater, the
illuminated portion of the former will be greater than a
hemisphere. Prop. 3 proves that the circle in the moon
which divides the dark and the bright portions (we will
in future, for short, call this “the dividing circle”) is
least when the cone which touches the sun and the moon
has its vertex at our eye. In Prop. 4 it is shown that
the dividing circle is not perceptibly different from a great
circle in the moon. If CD is a diameter of the dividing
circle, EF the parallel diameter of the parallel great circle
in the moon, O the centre of the moon, A the observer’s
eye, FDG the great circle in the moon the plane of which
passes through A, and G the point where OA meets the
latter great circle, Aristarchus takes an arc of the great
circle GH on one side of G, and another GK on the
other side of G, such that GH = GK = ½ (the arc FD),
and proves that the angle subtended at A by the arc
HK is less than 1/44°; consequently, he says, the arc
would be imperceptible at A even in that position, and
a fortiori the arc FD (which is nearly in a straight
line with the tangent AD) is quite imperceptible to the
observer at A. Hence (Prop. 5), when the moon appears
to us halved, we can take the plane of the great circle in
the moon which is parallel to the dividing circle as passing
through our eye. (It is tacitly assumed in Props. 3,
4, and throughout, that the diameters of the sun and
moon respectively subtend the same angle at our eye.)
The proof of Prop. 4 assumes as known the equivalent
of the proposition in trigonometry that, if each of the
angles α, β is not greater than a right angle, and α > β,
then


tan α / tan β > α/β > sin α / sin β.



Prop. 6 proves that the moon’s orbit is “lower” (i.e.
smaller) than that of the sun, and that, when the moon
appears to us halved, it is distant less than a quadrant
from the sun. Prop. 7 is the main proposition in the
treatise. It proves that, on the assumptions made, the
distance of the sun from the earth is greater than eighteen
times, but less than twenty times, the distance of the
moon from the earth. The proof is simple and elegant
and should delight any mathematician; its two parts
depend respectively on the geometrical equivalents of the
two inequalities stated in the formula quoted above,
namely,


tan α / tan β > α/β > sin α / sin β,


where α, β are angles not greater than a right angle and
α > β. Aristarchus also, in this proposition, cites 7/5 as
an approximation by defect to the value of √2, an approximation
found by the Pythagoreans and quoted by
Plato. The trigonometrical equivalent of the result obtained
in Prop. 7 is


1/18 > sin 3° > 1/20.


Prop. 8 states that, when the sun is totally eclipsed, the
sun and moon are comprehended by one and the same
cone which has its vertex at our eye. Aristarchus supports
this by the arguments (1) that, if the sun overlapped
the moon, it would not be totally eclipsed, and
(2) that, if the sun fell short (i.e. was more than covered),
it would remain totally eclipsed for some time, which it
does not (this, he says, is manifest from observation). It
is clear from this reasoning that Aristarchus had not observed
the phenomenon of an annular eclipse of the sun;
and it is curious that the first mention of an annular
eclipse seems to be that quoted by Simplicius from
Sosigenes (second century, A.D.), the teacher of Alexander
Aphrodisiensis.

It follows (Prop. 9) from Prop. 8 that the diameters of
the sun and moon are in the same ratio as their distances
from the earth respectively, that is to say (Prop. 7) in a
ratio greater than 18 : 1 but less than 20 : 1. Hence
(Prop. 10) the volume of the sun is more than 5832
times and less than 8000 times that of the moon.

By the usual geometrical substitute for trigonometry
Aristarchus proves in Prop. 11 that the diameter of the
moon has to the distance between the centre of the moon
and our eye a ratio which is less than 2/45ths but greater
than 1/30th. Since the angle subtended by the moon’s
diameter at the observer’s eye is assumed to be 2°, this
proposition is equivalent to the trigonometrical formula


1/45 > sin 1° > 1/60.


Having proved in Prop. 4 that, so far as our perception
goes, the dividing circle in the moon is indistinguishable
from a great circle, Aristarchus goes behind perception
and proves in Prop. 12 that the diameter of the dividing
circle is less than the diameter of the moon but greater
than 89/90ths of it. This is again because half the angle
subtended by the moon at the eye is assumed to be 1° or
1/90th of a right angle. The proposition is equivalent to
the trigonometrical formula


1 > cos 1° > 89/90.


We come now to propositions which depend on
Hypothesis 5 that “the breadth of the earth’s shadow is
that of two moons”. Prop. 13 is about the diameter of
the circular section of the cone formed by the earth’s
shadow at the place where the moon passes through it
in an eclipse, and it is worth while to notice the extreme
accuracy with which Aristarchus describes the diameter
in question. It is with him “the straight line subtending
the portion intercepted within the earth’s shadow of the
circumference of the circle in which the extremities of
the diameter of the circle dividing the dark and the
bright portions in the moon move.” Aristarchus proves
that the length of the straight line in question has to
the diameter of the moon a ratio less than 2 but greater
than 88 : 45, and has to the diameter of the sun a ratio
less than 1 : 9 but greater than 22 : 225. The ratio of
the straight line to the diameter of the moon is, in point
of fact, 2 cos² 1° or 2 sin² 89°, and Aristarchus therefore
proves the equivalent of


2 > 2 cos² 1° > ½(89/45)² or 7921/4050.


He then observes (without explanation) that 7921/4050 > 88/45
(an approximation easily obtained by developing 7921/4050
as a continued fraction (= 1 + (1    1    1)/(1 + 21 + 2))); his result
is therefore equivalent to


1 > cos² 1° > 44/45.


The next propositions are the equivalents of more
complicated trigonometrical formulæ. Prop. 14 is an
auxiliary proposition to Prop. 15. The diameter of the
shadow dealt with in Prop. 13 divides into two parts
the straight line joining the centre of the earth to the
centre of the moon, and Prop. 14 shows that the whole
length of this line is more than 675 times the part of it
terminating in the centre of the moon. With the aid of
Props. 7, 13, and 14 Aristarchus is now able, in Prop.
15, to prove another of his main results, namely, that
the diameter of the sun has to the diameter of the earth
a ratio greater than 19 : 3 but less than 43 : 6. In the
second half of the proof he has to handle quite large
numbers. If A be the centre of the sun, B the centre
of the earth, and M the vertex of the cone formed by
the earth’s shadow, he proves that MA : AB is greater than
(10125 × 7087) : (9146 × 6750) or 71755875 : 61735500,
and then adds, without any word of explanation, that
the latter ratio is greater than 43 : 37. Here again it is
difficult not to see in 43 : 37 the continued fraction
1 + 11/(6+6); and although we cannot suppose that the
Greeks could actually develop 71755875/61735500 or 21261/18292
as a continued fraction (in form), “we have here an important
proof of the employment by the ancients of a
method of calculation, the theory of which unquestionably
belongs to the moderns, but the first applications of
which are too simple not to have originated in very remote
times” (Paul Tannery).

The remaining propositions contain no more than
arithmetical inferences from the foregoing. Prop. 16 is
to the effect that the volume of the sun has to the volume
of the earth a ratio greater than 6859 : 27 but less than
79507 : 216 (the numbers are the cubes of those in Prop.
15); Prop. 17 proves that the diameter of the earth is to
that of the moon in a ratio greater than 108 : 43 but less
than 60 : 19 (ratios compounded of those in Props. 9
and 15), and Prop. 18 proves that the volume of the
earth is to that of the moon in a ratio greater than
1259712 : 79507 but less than 216000 : 6859.



ARISTARCHUS ON THE YEAR AND “GREAT YEAR”.

Aristarchus is said to have increased by 1/1623rd of a
day Callippus’s figure of 365¼ days as the length of the
solar year, and to have given 2484 years as the length of
the Great Year or the period after which the sun, the
moon and the five planets return to the same position in
the heavens. Tannery has shown reason for thinking
that 2484 is a wrong reading for 2434 years, and he
gives an explanation which seems convincing of the way
in which Aristarchus arrived at 2434 years as the length
of the Great Year. The Chaldæan period of 223 lunations
was well known in Greece. Its length was calculated
to be 6585⅓ days, and in this period the sun was
estimated to describe 10⅔° of its circle in addition to
18 sidereal revolutions. The Greeks used the period
called by them exeligmus which was three times the
period of 223 lunations and contained a whole number
of days, namely, 19756, during which the sun described
32° in addition to 54 sidereal revolutions. It followed
that the number of days in the sidereal year was—


19756/(54 + 32/360) = 19756/(54 + 4/45) = (45 × 19756)/2434 = 889020/2434= 365¼ + 3/4868.


Now 4868/3 = 1623 - ⅓, and Aristarchus seems to have
merely replaced 3/4868 by the close approximation 1/1623.
The calculation was, however, of no value because the
estimate of 10⅔° over 18 sidereal revolutions seems to
have been an approximation based merely on the difference
between 6585⅓ days and 18 years of 365¼ days, i.e.
6574½ days; thus the 10⅔° itself probably depended on
a solar year of 365¼ days, and Aristarchus’s evaluation
of it as 365¼ 1/1623 was really a sort of circular argument
like the similar calculation of the length of the year
made by Œnopides of Chios.

LATER IMPROVEMENTS ON ARISTARCHUS’S FIGURES.

It may interest the reader to know how far Aristarchus’s
estimates of sizes and distances were improved
upon by later Greek astronomers. We are not informed
how large he conceived the earth to be; but Archimedes
tells us that “some have tried to prove that the circumference
of the earth is about 300,000 stades and not
greater,” and it may be presumed that Aristarchus would,
like Archimedes, be content with this estimate. It is
probable that it was Dicaearchus who (about 300 B.C.)
arrived at this value, and that it was obtained by taking
24° (1/15th of the whole meridian circle) as the difference of
latitude between Syene and Lysimachia (on the same
meridian) and 20,000 stades as the actual distance
between the two places. Eratosthenes, born a few years
after Archimedes, say 284 B.C., is famous for a better
measurement of the earth which was based on scientific
principles. He found that at noon at the summer
solstice the sun threw no shadow at Syene, whereas at
the same hour at Alexandria (which he took to be on
the same meridian) a vertical stick cast a shadow corresponding
to 1/50th of the meridian circle. Assuming then
that the sun’s rays at the two places are parallel in
direction, and knowing the distance between them to be
5000 stades, he had only to take 50 times 5000 stades
to get the circumference of the earth. He seems, for
some reason, to have altered 250,000 into 252,000 stades,
and this, according to Pliny’s account of the kind of
stade used, works out to about 24,662 miles, giving for
the diameter of the earth a length of 7850 miles, a
surprisingly close approximation, however much it owes
to happy accidents in the calculation.

Eratosthenes’s estimates of the sizes and distances of
the sun and moon cannot be restored with certainty in
view of the defective state of the texts of our authorities.
We are better informed of Hipparchus’s results. In the
first book of a treatise on sizes and distances Hipparchus
based himself on an observation of an eclipse of the sun,
probably that of 20th November in the year 129 B.C.,
which was exactly total in the region about the Hellespont,
whereas at Alexandria about ⅘ths only of the
diameter was obscured. From these facts Hipparchus
deduced that, if the radius of the earth be the unit, the
least distance of the moon contains 71, and the greatest
83 of these units, the mean thus containing 77. But he
reverted to the question in the second book and proved
“from many considerations” that the mean distance of
the moon is 67⅓ times the radius of the earth, and also
that the distance of the sun is 2490 times the radius of
the earth. Hipparchus also made the size (meaning
thereby the solid content) of the sun to be 1880 times
that of the earth, and the size of the earth to be 27 times
that of the moon. The cube root of 1880 being about
12⅓, the diameters of the sun, earth and moon would be
in the ratio of the numbers 12⅓, 1, ⅓. Hipparchus seems
to have accepted Eratosthenes’s estimate of 252,000
stades for the circumference of the earth.

It is curious that Posidonius (135–51 B.C.), who was
much less of an astronomer, made a much better guess
at the distance of the sun from the earth. He made it
500,000,000 stades. As he also estimated the circumference
of the earth at 240,000 stades, we may take the
diameter of the earth to be, according to Posidonius,
about 76,400 stades; consequently, if D be that diameter,
Posidonius made the distance of the sun to be equal to
6545D as compared with Hipparchus’s 1245D.

Ptolemy does not mention Hipparchus’s figures. His
own estimate of the sun’s distance was 605D, so that
Hipparchus was far nearer the truth. But Hipparchus’s
estimate remained unknown and Ptolemy’s held the field
for many centuries; even Copernicus only made the
distance of the sun 750 times the earth’s diameter, and
it was not till 1671–3 that a substantial improvement
was made; observations of Mars carried out in those
years by Richer enabled Cassini to conclude that the
sun’s parallax was about 9·5″ corresponding to a distance
between the sun and the earth of 87,000,000 miles.

Ptolemy made the distance of the moon from the
earth to be 29½ times the earth’s diameter, and the diameter
of the earth to be 3⅖ times that of the moon. He
estimated the diameter of the sun at 18⅘ times that of
the moon and therefore about 5½ times that of the earth,
a figure again much inferior to that given by Hipparchus.
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	A.D.
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